Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)đk: x>=0 \(\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\left(\sqrt{x}+1\right)\right)}{\sqrt{x}+1}+\frac{9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)
\(x\ge0\Leftrightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0;\frac{9}{\sqrt{x}+1}>0\). áp dụng bđt cosi cho 2 số dương \(\sqrt{x}+1;\frac{9}{\sqrt{x}+1}\) ta có:
\(\sqrt{x}+1+\frac{9}{\sqrt{x}+1}\ge2\sqrt{9}=6\Leftrightarrow\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge6-2=4\)=> Min =4 <=> x=4.
nhớ l i k e
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
đề sai ở mẫu cuối nhé
đặt b + c - a = x ; a + c - b = y ; a + b - c = z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)
\(\ge6+8+12=26\)
ta có: \(a+b+c=2p\Rightarrow2p-a-b-c=0\)
mặt khác ta có: \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}=p\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\)
\(=\left(p-a+p-b+p-c\right)\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\) (*)
( vì \(2p-a-b-c=0\))
Đặt : \(p-a=x\left(x>0\right);p-b=y\left(y>0\right);p-c=z\left(z>0\right)\)
=>(*)<=>\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
mà \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) (tự chứng minh)
nên \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}\ge9\) =>đpcm