Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\\ 25a^2-15ab-20ac-15ab+9b^2+12bc+20ac-12bc-16c^2=9a^2-30ab+25b^2\\ \Leftrightarrow25a^2+9b^2-16c^2-30ab=9a^2-30ab+25b^2\\ \Leftrightarrow25a^2+9b^2-16c^2=9a^2+25b^2\\ \Leftrightarrow25a^2-9a^2=-9b^2+25b^2+16c^2\\ \Leftrightarrow16a^2-=16b^2+16c^2\\ \Leftrightarrow a^2=b^2+c^2\)
Vậy ...
Ta có : \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(5a-3b\right)^2-16c^2\)
Mà theo đề \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)
nên \(\left(5a-3b\right)^2-16c^2=\left(3a-5b\right)^2\)
\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=16c^2\)
\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=16c^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16c^2\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=c^2\Leftrightarrow a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\) nên \(a;b;c\) là độ dài 3 cạnh tam giác vuông theo Pytago đảo
Ta có: \(a^2-b^2=4c^2\)
\(\Rightarrow a^2-b^2-4c^2=0\)
Xét hiệu:
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)-\left(3a-5b\right)^2\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2-\left(3a-5b\right)^2\)
\(=25a^2-30ab+9b^2-64c^2-9a^2+30ab-25b^2\)
\(=16a^2-16b^2-64c^2\)
\(=16\left(a^2-b^2-4c^2\right)\)
\(=16.0\)
\(=0\)
\(\Rightarrow\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
đpcm
Tham khảo nhé~
Một cách khác :))
Xét VT của biểu thức cần cm ta có :
( 5a - 3b + 8c )( 5a - 3b - 8c )
= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < theo đề a2 - b2 = 4c2 >
= 252 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2 = VP
=> đpcm
ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2=\left(3a-5b^2\right)\)
\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=\left(8c\right)^2\)
\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=\left(8c\right)^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=64c^2\)
\(\Leftrightarrow16\left(a^2-b^2\right)=64c^2\Leftrightarrow a^2-b^2=4c^2\) đúng như giả thiết
\(\Rightarrow\left(đpcm\right)\)
\(a^2-b^2-c^2=0\Rightarrow c^2=a^2-b^2\)
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)\)
\(=\left(5a-3b\right)^2-\left(4c\right)^2\)
\(=25a^2-30ab+9b^2-16c^2\)
\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a\right)^2-2.3a.5b+\left(5b\right)^2=\left(3a-5b\right)^2\)
Chúc bạn học tốt.
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)
Ta có
\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)
\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)
\(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)
\(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)
Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)
Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)
Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)
\(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)
\(\Rightarrow a=b=c\)
Vậy a, b, c là độ dài ba cạnh của một tam giác đều
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)
\(\Leftrightarrow25a^2-15ab-20ac-15ab+9b^2+12bc+20ac-12bc-16c^2=9a^2-30ab+25b^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-16c^2=9a^2-30ab+25b^2\)
\(\Leftrightarrow25a^2+9b^2-16c^2=9a^2+25b^2\)
\(\Leftrightarrow16a^2=16c^2+16b^2\)
\(\Rightarrow a^2=b^2+c^2\)
\(\Rightarrow\Delta\) với 3 cạnh a, b, c vuông
\(\Rightarrow\Delta\) có độ dài 3 cạnh trên là \(\Delta\) vuông ( đpcm )
Vậy...