K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Sửa đề: cm A<0

\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)

\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)

\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)

\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)

\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0

a+c>b => a+c-b > 0

c+b>a=>a-(c+b)=a-c-b < 0

a+b>c => a+b-c > 0

Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)

23 tháng 7 2023

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

@Hà Nhung Huyền Trang

17 tháng 6 2016

undefined

17 tháng 6 2016

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

30 tháng 10 2023

a: \(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\)

\(=\left(b^2-2bc+c^2-a^2\right)\left(b^2+2bc+c^2-a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[\left(b-c\right)^2-a^2\right]\)

\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)

b: a,b,c là độ dài 3 cạnh của 1 tam giác

=>b+c>a và a+b>c và a+c>b

=>b+c-a>0 và a+b-c>0 và a+c-b>0

=>b+c-a>0 và b-(c+a)<0 và a+b-c>0

=>(b+c-a)[b-(c+a)][a+b-c](a+b+c)<0

=>A<0

DD
18 tháng 6 2021

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)

\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)

(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))

1 tháng 6 2018

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

16 tháng 6 2016

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

16 tháng 6 2016

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)

31 tháng 12 2015

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

                                                                                 \(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

                                                                                \(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)

                                                                                                        (bất đẳng thức tam giác)

\(\Rightarrow\) \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)

Thấy tao siêu chưa, mới có lớp 6 mà làm được toán lớp 8 nha ( tick nhiều nhiều nha)

31 tháng 12 2015

thằng dinh quoc anh siêu cái gì! Mày nhờ chị mày làm hộ mà còn vênh vênh váo váo!