K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Theo BĐT Schur thì ta có:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

Vậy thì giờ chỉ theo AM-GM là xong

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}=3\)

28 tháng 3 2018

\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)

\(\Leftrightarrow\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}\ge3+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a+b+c}{2\left(b+c-a\right)}+\dfrac{a+b+c}{2\left(a+c-b\right)}+\dfrac{a+b+c}{2\left(a+b-c\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{a+b+c}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{9}{2}\)

Lại có:\(\dfrac{a+b+c}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{a+b+c}{2}\cdot\dfrac{9}{b+c-a+a+c-b+a+b-c}\ge\dfrac{9}{2}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Có nhiều cách để giải quyết bài toán này. Đây là một cách đơn thuần sử dụng BĐT Cô-si.

Đặt \(\left\{\begin{matrix} b+c-a=x\\ a+c-b=y\\ a+b-c=z\end{matrix}\right.\) (\(x,y,z>0\) do $a,b,c$ là ba cạnh tam giác)

\(\Rightarrow (a,b,c)=\left(\frac{y+z}{2}; \frac{x+z}{2}; \frac{x+y}{2}\right)\)

BĐT cần chứng minh tương đương với:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3(*)\)

Áp dụng BĐT Cô-si cho 3 số:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(z+x)}{8xyz}}\)

Tiếp tục Cô-si: \((x+y)(y+z)(z+x)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow \frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{8xyz}{8xyz}}=3\)

Do đó $(*)$ được chứng minh.

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)

17 tháng 2 2019

Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :

\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

Cộng 3 vế với nhau , ta có :

\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)

17 tháng 2 2019

Ta có :

\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);

\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);

\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)

Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b

\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)

\(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)

Tương tự :

\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)

Kết hợp (*) với (**)

=> ĐPCM

25 tháng 5 2018

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

25 tháng 5 2018

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

29 tháng 7 2017

vì trị tuyệt đối của a>trị tuyệt đối của b-c

suy ra a^2>(b-c)^2 rồi bạn tự giải tiếp

29 tháng 7 2017

giải thích kĩ cho em vs ạ

4 tháng 8 2019

 TL:

\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)

17 tháng 10 2021

Đáp án: 

Giải thích các bước giải:

a, phân tích thành nhân tử

M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
    = (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
    = [(a-b)^2 - c^2][(a+b)^2 - c^2]
    = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0