Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Theo bất đẳng thức AM-GM ta có:
\(ab(a+b)+bc(b+c)+ac(c+a)\)
\(=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\geq 6\sqrt[6]{a^2b.ab^2.b^2c.bc^2.c^2a.ca^2}\)
\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq 6abc\)
\(\Leftrightarrow ab(a+b-2c)+bc(b+c-2a)+ca(c+a-2b)\geq 0\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)
\(\geq \frac{(a+b+c)^2}{ab+ac-a^2+ab+bc-b^2+ca+cb-c^2}\)
\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)
Vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
hay \(2(ab+bc+ac)-(a^2+b^2+c^2)>0\)
Mặt khác theo BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}=\frac{a^2+b^2+c^2+2(ab+bc+ac)}{ab+bc+ac}\geq \frac{3(ab+bc+ac)}{ab+bc+ac}=3\)
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Ta có bđt \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)(1)
Chứng minh:
Áp dụng bđt cosi cho 3 số dương:
\(x+y+z\ge3\sqrt[3]{xyz}\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{xyz}}\)(3)
Từ (2),(3)\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{xyz}}=9\)
Vậy bđt (1) đã chứng minh
Áp dụng bđt (1), ta có \(\left[\left(2a+b\right)+\left(2b+c\right)+\left(2c+a\right)\right]\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow3\left(a+b+c\right)\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow3.1.\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)Vậy nếu a+b+c=1 thì \(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)
\(vì:a,b,c>0\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)
\(Cosi:\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\ge\dfrac{2}{\dfrac{a+b}{2}}=\dfrac{4}{a+b}\)
\(\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}\right)\le\dfrac{1}{16}\left(\dfrac{8}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}.tươngtự:\dfrac{4}{a+b+2c}\le\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{2c};\dfrac{4}{a+2b+c}\le\dfrac{1}{4a}+\dfrac{1}{2b}+\dfrac{1}{2c}.\text{cộng vế theo vế ta được:}\dfrac{4}{a+2b+c}+\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đpcm}\right)\)
Áp dụng BĐT \(\dfrac{1}{x+y+z+t}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\) với các số dương
Ta có: \(\dfrac{4}{a+a+b+c}\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)
\(\dfrac{4}{a+2b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Cộng vế với vế:
\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{\left ( \frac{a}{bc} \right )^2}{\frac{1}{c}}+\frac{\left ( \frac{b}{ca} \right )^2}{\frac{1}{a}}+\frac{\left ( \frac{c}{ab} \right )^2}{\frac{1}{b}}\geq \frac{\left ( \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
\(\Leftrightarrow \text{VT}\geq \frac{\left ( \frac{a^2+b^2+c^2}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
Theo hệ quả của BĐT AM-GM thì:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{\left ( \frac{ab+bc+ac}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Áp dụngk BĐt cô-si, ta có
\(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{1}{a}\ge3.\frac{1}{c}\)
Tương tự , rồi cộng vào, ta có
\(2A+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow A\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)
^_^
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ta được
\(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{2b}\ge\dfrac{9}{2\left(a+2b\right)}\)
\(\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge\dfrac{9}{2\left(b+2c\right)}\)
\(\dfrac{1}{2c}+\dfrac{1}{2a}+\dfrac{1}{2a}\ge\dfrac{9}{2\left(c+2a\right)}\)
Cộng các BĐT theo vế
\(\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
Dấu " = " xảy ra khi a = b = c ( a,b,c > 0 )
Vì vai trò của a,b,c là như nhau, giả sử
\(a\ge c\ge b>0\)
Ta có
\(a+b-c< a\)
\(\Leftrightarrow b-c\le0\) ( đúng với gt )
\(\Rightarrow a+b-c< a\)
\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)
\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)
CMTT :
\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)
Cộng vế với vế 3 BĐT trên , được
\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)