K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Do a + b + c = 1 nên \(\frac{\sqrt{\left(a+bc\right)\left(b+ca\right)}}{\sqrt{c+ab}}=\frac{\sqrt{\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ca\right]}}{\sqrt{c\left(a+b+c\right)+ab}}\)

\(=\frac{\sqrt{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}}{\sqrt{ac+bc+c^2+ab}}=\frac{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\left(a+b\right)^2}=a+b\) (1)

Tương tự \(\hept{\begin{cases}\frac{\sqrt{\left(b+ca\right)\left(c+ab\right)}}{\sqrt{a+bc}}=b+c\text{ }\left(2\right)\\\frac{\sqrt{\left(c+ab\right)\left(a+bc\right)}}{\sqrt{b+ac}}=a+c\text{ }\left(3\right)\end{cases}}\)

Cộng vế với vế của (1)(2)(3) lại ta được :

\(\frac{\sqrt{\left(a+bc\right)\left(b+ca\right)}}{\sqrt{c+ab}}+\frac{\sqrt{\left(b+ca\right)\left(c+ab\right)}}{\sqrt{a+bc}}+\frac{\sqrt{\left(c+ab\right)\left(a+bc\right)}}{\sqrt{b+ac}}=2\left(a+b+c\right)=2\)

21 tháng 8 2017

mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi

21 tháng 8 2017

thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm

4 tháng 2 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 tháng 2 2021

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

21 tháng 8 2020

Chú ý đến giả thiết a + b + c = 1 ta viết được \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1-c\right)\left(1+c\right)}}=\)\(\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}=\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}\)\(=\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)

Mặt khác áp dụng bất đẳng thức Cauchy ta được \(a^2+b^2+2\left(ab+bc+ca\right)\ge2ab+2\left(ab+bc+ca\right)=\)\(2\left(ab+bc\right)+2\left(ab+ca\right)\)và \(a+b\ge2\sqrt{ab}\)

Từ đó dẫn đến \(\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{ab}{2\sqrt{ab}\sqrt{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)\(=\frac{1}{2}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)

Mà theo bất đẳng thức quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có: \(\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\le\sqrt{\frac{1}{4}\left(\frac{ab}{2\left(ab+bc\right)}+\frac{ab}{2\left(ab+ca\right)}\right)}\)

\(=\frac{1}{2\sqrt{2}}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}=\frac{1}{2\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)

Từ đó ta có bất đẳng thức: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+a\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}\)(2) ; \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)(3)

Cộng theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+c\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)\(\le\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\)

Ta cần chứng minh\(\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\le\frac{3\sqrt{2}}{8}\)

Hay \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\le3\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)

\(\le\sqrt{3\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}+\frac{a}{a+b}\right)}=3\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 8 2020

Sửa đề: \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
25 tháng 12 2020

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\)

\(\Leftrightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge a+\sqrt{bc}\)

Do đó \(\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{a}}{\left(c+a\right)\left(c+b\right)}+\frac{bc}{\left(c+a\right)\left(c+b\right)}\left(1\right)\)

Chứng minh tương tự ta được: 

\(\hept{\begin{cases}\sqrt{\frac{bc}{\left(c+b\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+b\right)\left(a+b\right)}}{\left(c+b\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}\left(2\right)\\\sqrt{\frac{ca}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{ca\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{c}}{\left(c+a\right)\left(a+b\right)}+\frac{ab}{\left(a+c\right)\left(a+b\right)}\left(3\right)\end{cases}}\)

\(\Rightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\)

\(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(a+c\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+\)\(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}\left(4\right)\)

Ta lại có: \(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}+\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{bc\left(b+c\right)+ac\left(a+c\right)+ab\left(a+b\right)+2abc}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}\)

\(=\frac{bc\left(a+b+c\right)+ca\left(a+b+c\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{c\left(a+b+c\right)\left(b+a\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

\(\left(4\right)\Leftrightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)\(\ge\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó ta cần chứng minh \(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge1+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Điều này tương đương với \(\sqrt{a}\left(b+c\right)+\sqrt{b}\left(a+c\right)+\sqrt{c}\left(a+b\right)\ge6\sqrt{abc}\left(5\right)\)

Theo bất đẳng thức AM-GM thì (5) luôn đúng

Dấu "=" xảy ra khi (1);(2);(3) và (5) xảy ra dấu "=". điều này tương đương với a=b=c

Vậy ta có điều phải chứng minh

=))

NV
13 tháng 1

Bunhiacopxki:

\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)

\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)

Tương tự:

\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)

\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c