Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Vì b + c + a > b => \(\frac{a}{b}>\frac{a}{b+c+a}\)
2 ) Ta có :
\(\frac{a}{b}>\frac{a}{b+c+a}\)
\(\frac{b}{c}>\frac{b}{b+c+a}\)
\(\frac{c}{a}>\frac{c}{b+c+a}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{b+c+a}=\frac{a+b+c}{b+c+a}=1\) (ddpcm)
Ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )
Lại có :
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)
\(\Rightarrow A< 2\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )
Ta thấy:
\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)
\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Do đó:
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)
VÀ \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow2>A>1\)
\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0
Vậy A không là số tự nhiên với a,b,c,d > 0
Tính chất tỉ số:
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*)
cm:
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y
- - - - -
với các số a, b, c ta có: a < a+b ; b < b+c ; c < c+a
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b)
=> A < 2(a+b+c)/(a+b+c) = 2
mặt khác ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b)
=> A > (a+b+c)/(a+b+c) = 1
Tóm lại ta có: 1 < A < 2 => A không là số tự nhiên
Do a;b;c và d là các số tự nhiên >0 =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số tự nhiên
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d
A > a+b+c+d/a+b+c+d
A > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2 (2)
Từ (1) và (2) => 1 < A < 2
=> A không phải số nguyên ( đpcm)
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Biến đổi vế 2 :
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )
\(=\frac{bc+ac+ab}{abc}\)
Ta có :
\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)
\(=\frac{abc+abc+abc}{abc}\)\(=3\)
→ ( a + b + c ) = 3
Ta có : 3 . 3 = 9 => ĐPCM
Áp dụng \(\frac{x}{y}>\frac{x}{y+m}\) ( x,y,m là số tự nhiên lớn hơn 0)
Ta có \(\frac{a}{a+b}>\frac{a}{a+b+c}\forall a,b,c dương\)
\(\frac{b}{b+c}>\frac{b}{b+c+a}\forall a,b,c dương\)
\(\frac{c}{c+a}>\frac{c}{c+a+b}\forall a,b,c dương\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\)
=> \(A>\frac{a+b+c}{a+b+c}=1\)
Vậy A>1
Cảm ơn bạn Trang Nguyễn nhiều lắm! Bạn có thể giải thích giúp mình là vì sao dòng thứ 3 đếm từ dưới lên trên rồi đến dòng thứ 2 từ dưới lên trên lại là \(\frac{a+b+c}{a+b+c}\)=1 không?