Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x3 + y3 = z(3xy - z2)
=> x3 + y3 = 3xyz - z3
=> x3 + y3 + z3 - 3xyz = 0
=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0
=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0
=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz = 0
=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0
=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0
=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)
=> 2(x2 + y2 + z2 - xy - yz - zx) = 0
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0
=> (x - y)2 + (y - z)2 + (x - z)2 = 0
=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)
mà x + y + z = 3
=> x = y = z = 1
Khi đó A = 673(x2019 + y2019 + z2019) + 1
= 673(12019 + 12019 + 12019) + 1
= 673.3 + 1 = 2020
Vậy A = 2020
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
Mình nhầm xíu :
Tính giá trị của biểu thức :
P = x2015 + y2015 + z2015
Mình đọc chưa hết đề nên làm thiếu, cậu bổ sung nhé:
Thay vào P, ta có:
\(P=2017x+y^{2018}+z^{2019}=2017.\frac{1}{2}+\left(\frac{5}{6}\right)^{2018}+\left(\frac{-5}{6}\right)^{2019}=1008,5+\frac{5^{2018}}{6^{2018}}.\frac{1}{6}=1008,5+\frac{5^{2018}}{6^{2019}}\)
điều kiện x,y,z khác 0
ta có \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}\\ =\frac{y+z+1+z+x+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\\ \Rightarrow x+y+z=\frac{1}{2}\\ \Rightarrow y+z=\frac{1}{2}-x\left(1\right)\)
\(\frac{y+z+1}{x}=2\\ \Leftrightarrow y+z+1=2x\)
kết hợp với (1)
có \(\frac{1}{2}-x+1=2x\\ \Leftrightarrow2x+x=\frac{1}{2}+1\\ \Leftrightarrow3x=\frac{3}{2}\\ \Leftrightarrow x=\frac{1}{2}\)
mà x + y + z = \(\frac{1}{2} \)
=> y + z = 0
=> y = -z
có \(\frac{x+y-3}{z}=2\\ \Leftrightarrow x+y-3=2z\\ \Leftrightarrow y-z=-\frac{5}{2}\)
mà y = -z
=> \(-3z=-\frac{5}{2}\\ \Rightarrow z=\frac{5}{6}\)
=> y = \(-\frac{5}{6}\)
=> \(P=2017.\frac{1}{2}+\left(-\frac{5}{6}\right)^{2018}+\left(\frac{5}{6}\right)^{2019}\)
\(=1008,5+\left(\frac{5}{6}\right)^{2018}+\left(\frac{5}{6}\right)^{2019}\)