Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sigma\frac{a}{1+b^2}=sigma\left(a-\frac{ab^2}{1+b^2}\right)\ge sigma\left(a\right)-sigma\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}>\frac{2018}{2003}\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)
Khi \(a=b=c=1\)
\(\text{ Nếu: a}< 1\text{ thì: }b+c=5-a;b^2+c^2=\left(3-a\right)\left(3+a\right)\)
\(\text{ta có:}9-a^2\ge\left(25-10a+a^2\right):2\Leftrightarrow18-2a^2\ge25-10a+a^2\)
\(\Leftrightarrow10a-7-3a^2\ge0\Leftrightarrow-3a^2+3a+7a-7=-3a\left(a-1\right)+7\left(a-1\right)=\left(7-3a\right)\left(a-1\right)\ge0\)
do đó: a >=1
áp dụng BĐT Bunhiacopxky
\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)
\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)