K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

NV
15 tháng 3 2020

\(VT=sin^2A+sin^2B+sin^2C=\frac{1-cos2A}{2}+\frac{1-cos2B}{2}+1-cos^2C\)

\(=2-\left(cos2A+cos2B\right)-cos^2C=2-cos\left(A+B\right)cos\left(A-B\right)-cos^2C\)

\(=2+cosC.cos\left(A-B\right)-cos^2C\)

Mà ABC là tam giác nhọn \(\Rightarrow\left\{{}\begin{matrix}cosC>0\\0< cos\left(A-B\right)\le1\end{matrix}\right.\)

\(\Rightarrow cosC.cos\left(A-B\right)\le cosC\)

\(\Rightarrow VT\le2+cosC-cos^2C=\frac{9}{4}-\left(cosC-\frac{1}{2}\right)^2\le\frac{9}{4}\)

Dấu "=" xảy ra khi ABC là tam giác đều

P/s: BĐT của bạn bị ngược chiều

20 tháng 12 2021

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

20 tháng 12 2021

Ai giải đc cho 5 k và được kết bạn.(thực ra mình lớp 4,đọc tạp chí pi bố mik cũng không hiểu gì luôn.)

Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là : A. 450 B. 300 C. 600 D. 1200 Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là : A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA...
Đọc tiếp

Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là :

A. 450

B. 300

C. 600

D. 1200

Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là :

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA = a\(\sqrt{3}\) , AB = a , AD = \(a\sqrt{3}\) . Số đo giữa cạnh bên SB và cạnh AB là :

A. 600

B. 450

C. 900

D. 300

Câu 4 : Cho tứ diện ABCD đều cạnh bằng a . Gọi M là trung điểm CD , \(\alpha\) là góc giữa AC và BM . Chọn khẳng định đúng ?

A. \(cos\alpha=\frac{\sqrt{3}}{4}\)

B. \(cos\alpha=\frac{1}{\sqrt{3}}\)

C. \(cos\alpha=\frac{\sqrt{3}}{6}\)

D. \(\alpha=60^0\)

Câu 5: Cho tứ diện ABCD với \(AB\perp AC\) , \(AB\perp BD\) . Gọi P , Q lần lượt là trung điểm của AB và CD . Góc giữa PQ và AB là :

A. 900

B. 600

C. 300

D. 450

Câu 6 : Cho hình thoi ABCD có tâm O , AC = 2a . Lấy điểm S không thuộc (ABCD) sao cho \(SO\perp\left(ABCD\right)\) . Biết tan \(\widehat{SOB}\) = \(\frac{1}{2}\) . Tính số đo của góc giữa SC và (ABCD)

A. 750

B. 450

C. 300

D. 600

Câu 7 : Cho hình chóp S.ABC có \(SA\perp\left(ABC\right)\) và tam giác ABC không vuông . Gọi H , K lần lượt là trực tâm \(\Delta ABC\)\(\Delta SBC\) . Số đo góc tạo bởi SC và mp (BHK) là :

A. 450

B. 1200

C. 900

D. 650

Câu 8 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , \(SA\perp\left(ABC\right)\) , \(SA=a\frac{\sqrt{3}}{2}\) . Gọi (P) là mặt phẳng đi qua A và vuông góc với trung tuyến SM của tam giác SBC . Thiết diện của (P) và hình chóp S.ABC có diện tích bằng ?

A. \(\frac{a^2\sqrt{6}}{8}\)

B. \(\frac{a^2}{6}\)

C. \(a^2\)

D. \(\frac{a^2\sqrt{16}}{16}\)

Câu 9 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC . Biết tam giác SBC là tam giác đều . Tính số đo của góc giữa SA và (ABC)

A. 600

B. 750

C. 450

D. 300

HELP ME !!!! giải chi tiết giùm mình với ạ

4
NV
6 tháng 6 2020

Câu 8:

Kẻ \(AH\perp SM\)

Trong mặt phẳng (SBC), qua H kẻ đường thẳng song song BC cắt SB và SC lần lượt tại P và Q

\(\Rightarrow\Delta APQ\) là thiết diện của (P) và chóp

\(AM=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow SA=AM\Rightarrow\Delta SAM\) vuông cân tại A

\(\Rightarrow AH=\frac{SA\sqrt{2}}{2}=\frac{a\sqrt{6}}{4}\) đồng thời H là trung điểm SM

\(\Rightarrow PQ=\frac{1}{2}BC=\frac{a}{2}\) (đường trung bình)

\(\Rightarrow S_{\Delta APQ}=\frac{1}{2}AH.PQ=\frac{a^2\sqrt{6}}{16}\)

Câu 9.

\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(SH=AH=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAH\) vuông cân tại H

\(\Rightarrow\widehat{SAH}=45^0\)

NV
6 tháng 6 2020

Câu 6:

Bạn kiểm tra lại đề, \(SO\perp\left(ABCD\right)\Rightarrow SO\perp OB\Rightarrow\widehat{SOB}=90^0\)

Nên không thể có chuyện \(tan\widehat{SOB}=\frac{1}{2}\)

Câu 7:

H là trực tâm tam giác ABC \(\Rightarrow BH\perp AC\)

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BH\)

\(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)

K là trực tâm tam giác SBC \(\Rightarrow BK\perp SC\) (2)

(1);(2) \(\Rightarrow SC\perp\left(BHK\right)\Rightarrow\) góc giữa SC và (BHK) bằng 90 độ

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\) A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. \(a^2\) Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC) A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp đều S.ABCD...
Đọc tiếp

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\)

B. \(a^2\sqrt{3}\)

C. \(a^2\sqrt{2}\)

D. \(a^2\)

Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC)

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a , điểm M thuộc cạnh SC sao cho SM = 2MC . Mặt phẳng (P) chứa AM và song song với BD . Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi (P)

A. \(\frac{\sqrt{3}a^2}{5}\) C. \(\frac{2\sqrt{26}a^2}{15}\) D. \(\frac{2\sqrt{3}a^2}{5}\)

B. \(\frac{4\sqrt{26}a^2}{15}\)

Câu 4 : Cho hình lập phương ABCD.EFGH . Góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EH}\) bằng :

A. 00

B. 600

C. 900

D. 300

Câu 5 : Tứ diện đều ABCD số đo góc giữa hai véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{AD}\)

A. 450

B. 300

C. 900

D. 600

Câu 6 : Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và A'C'

A. 600

B. 450

C. 900

D. 300

Câu 7 : Cho hình lập phương ABCD.A'B'C'D' , góc giữa hai đường thẳng A'B và B'C là :

A. 450

B. 300

C. 600

D. 900

Câu 8 : Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy mặt phẳng vuông góc với \(\Delta\) cho trước ?

A. 2

B. 3

C. Vô số

D. 1

Câu 9 : Cho tứ diện đều ABCD . Tích vô hướng \(\overrightarrow{AB}.\overrightarrow{CD}\) bằng

A. \(\frac{a^2}{2}\)

B. 0

C. \(-\frac{a^2}{2}\)

D. \(a^2\)

Câu 10: Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và AD

A. 900

B. 600

C. 450

D. 300

Câu 11 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3a , AD = 2a , SA vuông góc với mặt phẳng (ABCD) , SA = a . Gọi \(\varphi\) là góc giữa đường thẳng SC và mp (ABCD) . Khi đó tan \(\varphi\) bằng bao nhiêu ?

A. \(\frac{\sqrt{11}}{11}\)

B. \(\frac{\sqrt{13}}{13}\)

C. \(\frac{\sqrt{7}}{7}\)

D. \(\frac{\sqrt{5}}{5}\)

Câu 12 : Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EG}\)

A. 600

B. 450

C. 1200

D. 900

HELP ME !!!!! giải chi tiết từng câu giùm cho mình với ạ

5
NV
6 tháng 6 2020

11.

\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(\Rightarrow\widehat{SCA}=\varphi\)

\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)

\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)

12.

Hai vecto \(\overrightarrow{AB}\)\(\overrightarrow{EF}\) song song cùng chiều

\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)

NV
6 tháng 6 2020

8.

Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)

9.

Gọi O là tâm tam giác BCD

\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)

\(CD\perp BO\) (trung tuyến đồng thời là đường cao)

\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)

10.

\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\) A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\) B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\) C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\) D. \(\frac{2x-2}{\sqrt{x^2-2x}}\) Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2 A. 1 B. 0 C. 3 D. 2 Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\) A. y' =...
Đọc tiếp

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\)

A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\)

B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\)

C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\)

D. \(\frac{2x-2}{\sqrt{x^2-2x}}\)

Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2

A. 1 B. 0 C. 3 D. 2

Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\)

A. y' = \(\frac{2}{\left(x-2\right)^2}\)

B. y' = \(\frac{-11}{\left(x-2\right)^2}\)

C. y' = \(\frac{-5}{\left(x-2\right)^2}\)

D. y' = \(\frac{10}{\left(x-2\right)^2}\)

Câu 4 : Trên đồ thị của hàm số y = \(\frac{3x}{x-2}\) có điểm M(x0 ; y0) (x0<0) sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 3/4 . Khi đó x0 + 2y0 bằng

A. \(-\frac{1}{2}\) B. -1 C. \(\frac{1}{2}\) D. 1

Câu 5 : Biết hàm số f (x) - f (2x) có đạo hàm bằng 18 tại x = 1 và đạo hàm bằng 1000 tại x = 2 . Tính đạo hàm của hàm số f (x) - f (4x) tại x = 1

A. -2018 B. 2018 C. 1018 D. -1018

Câu 6 : Tìm m để hàm số y = \(\frac{\left(m+1\right)x^3}{3}-\left(m+1\right)x^2+\left(3m+2\right)+1\) có y' \(\le0\) , \(\forall x\in R\)

A. \(m\le-\frac{1}{2}\)

B. m < -1

C. m \(\le1\)

D. m \(\le-1\)

Câu 7 : Gọi d là tiếp tuyến của đồ thị hàm số y = f (x) = -x3 + x tại điểm M(-2;6) . Hệ số góc của (d) là

A. -11 B. 11 C. 6 D. -12

Câu 8 : Cho hàm số f (x) = -x3 + 3mx2 - 12x + 3 với m là tham số thực . Số giá trị nguyên của m để f' (x)\(\le0\) với \(\forall x\in R\)

A. 1 B. 5 C. 4 D. 3

Câu 9 : Phương trình tiếp tuyến của đường cong y = x3 + 3x2 -2 tại điểm có hoành độ x0 = 1 là

A. y = -9x + 7 B. y = -9x - 7 C. y = 9x + 7 D. y = 9x - 7

Câu 10 : Có bao nhiêu điểm thuộc đồ thị hàm số y = \(\frac{2x-1}{x-1}\) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2019 ?

A. Vô số B. 0 C. 1 D. 2

Câu 11 : Phương trình tiếp tuyến của đồ thị hàm số y = \(\frac{x-1}{x+2}\) tại điểm có hoành độ bằng -3 là

A. y = -3x + 13 B. y = -3x - 5 C. y = 3x + 5 D. y = 3x + 13

Câu 12 : Cho hàm số y = -2x3 + 6x2 -5 có đồ thị (C) . Phương trình tiếp tuyến của (C) tại điểm M thuộc (C) và có hoành độ bằng 3 là

A. y = -18x + 49 B. y = 18x + 49 C. y = 18x - 49 D. y = -18x - 49

Câu 13 : Hệ số góc k của tiếp tuyến đồ thị hàm số y = x3 + 1 tại điểm M(1;2) là

A. k = 5 B. k = 4 C. k = 3 D. k = 12

Câu 14 : Cho hàm số y = \(-\frac{1}{3}x^3-2x^2-3x+1\) có đồ thị (C) . Trong các tiếp tuyến với (C) , tiếp tuyến có hệ số góc lớn nhất bằng bao nhiêu ?

A. k = 3 B. k = 2 C. k = 0 D. k = 1

Câu 15 : Cho hàm số y = \(\frac{2x-3}{x-2}\) có đồ thị (C) và hai đường thẳng d1 : x = 2 , d2 : y = 2 . Tiếp tuyến bất kì của (C) cắt d1 và d2 lần lượt tại A và B . Khi AB có độ dài nhỏ nhất thì tổng các hoành độ tiếp điểm bằng

A. -3 B. -2 C. 1 D. 4

Câu 16 : Tính vi phân của hàm số y = x2

A. dy = 2xdx B. dy = dx C. dy = -2xdx D. dy = xdx

Câu 17 : Cho hình chóp S.ABC có SA\(\perp\) (ABC) . Gọi H , K lần lượt là trực tâm các tam giác SBC và ABC . Mệnh đề nào sai trong các mệnh đề sau ?

A. \(BC\perp\left(SAH\right)\) B. \(HK\perp\left(SBC\right)\)

C. \(BC\perp\left(SAB\right)\) D. SH , AK và BC đồng quy

Câu 18 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết rằng SA = SC , SB = SD . Khẳng định nào sau đây là đúng ?

A. \(CD\perp AC\) B. \(CD\perp\left(SBD\right)\) C. \(AB\perp\left(SAC\right)\) D. \(SO\perp\left(ABCD\right)\)

Câu 19 : Cho hình chóp S.ABCD , ABCD là hình thang vuông tại A và B , AD = 2a , AB = BC = a , \(SA\perp\left(ABCD\right)\) . Trong các khẳng định sau , khẳng định nào sai ?

A. \(CD\perp\left(SBC\right)\) B. \(BC\perp\left(SAB\right)\) C. \(CD\perp\left(SAC\right)\) D. \(AB\perp\left(SAD\right)\)

Câu 20 : Hình chóp S.ABCD có đáy là hình vuông , hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy . AH , AK lần lượt là đường cao của tam giác SAB , tam giác SAD . Mệnh đề nào sau đây là sai ?

A. \(HK\perp SC\) B. \(SA\perp AC\) C. \(BC\perp AH\) D. \(AK\perp BD\)

Câu 21 : Cho hình chóp S.ABC có các cạnh SA , SB , SC đôi một vuông góc và SA = SB = SC . Gọi I là trung điểm của AB . Khi đó góc giữa 2 đường thẳng SI và BC bằng

A. 1200 B. 600 C. 900 D. 300

Câu 22 : Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi M là trung điểm của AB và \(\alpha\) là góc tạo bởi MC' và mặt phẳng (ABC) . Khi đó \(tan\alpha\) bằng

A. \(\frac{2\sqrt{7}}{7}\) B. \(\frac{\sqrt{3}}{2}\) C. \(\sqrt{\frac{3}{7}}\) D. \(\frac{2\sqrt{3}}{3}\)

Câu 23 : Cho hình chóp S.ABC có đáy là tam giác vuông tại B , AB = 3a , BC = 4a , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) . Biết SB = \(2a\sqrt{3}\)\(\widehat{SBC}=30^0\) . Tính \(d\left(B;\left(SAC\right)\right)\)

A. \(\frac{3a\sqrt{7}}{14}\) B. \(6a\sqrt{7}\) C. \(\frac{6a\sqrt{7}}{7}\) D. \(a\sqrt{7}\)

Câu 24 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và các cạnh bên bằng nhau . Gọi O là giao điểm của hai đường chéo của đáy . Tìm mặt phẳng vuông góc với SO ?

A. (SAC) B. (SBC) C. (ABCD) D. (SAB)

Câu 25 : Cho hình chóp S.ABC có đáy ABC là tam giác nhọn , cạnh bên SA = SB = SC . Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC) . Khi đó

A. H là tâm đường tròn ngoại tiếp tam giác ABC

B. H là tâm đường tròn nội tiếp tam giác ABC

C. H là trực tâm của tam giác ABC

D. H là trọng tâm của tam giác ABC

Câu 26 : Cho tứ diện ABCD có AB , BC , CD đôi một vuông góc với nhau và AB = a , BC = b , CD = c . Độ dài đoạn thẳng AD bằng

A. \(\sqrt{a^2+b^2+c^2}\)

B. \(\sqrt{-a^2+b^2+c^2}\)

C. \(\sqrt{a^2+b^2-c^2}\)

D. \(\sqrt{a^2-b^2+c^2}\)

help me !!!!!! giải chi tiết từng câu giúp mình với ạ

10
NV
12 tháng 6 2020

25.

H là hình chiếu của S lên (ABC)

Do \(SA=SB=SC\Rightarrow HA=HB=HC\)

\(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC

26.

\(\left\{{}\begin{matrix}AB\perp BC\\AB\perp CD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\) \(\Rightarrow AB\perp BD\)

\(\Rightarrow\Delta ABD\) vuông tại B

Pitago tam giác vuông BCD (vuông tại C):

\(BC^2+CD^2=BD^2\Rightarrow BD^2=b^2+c^2\)

Pitago tam giác vuông ABD:

\(AD^2=AB^2+BC^2=a^2+b^2+c^2\)

\(\Rightarrow AD=\sqrt{a^2+b^2+c^2}\)

NV
12 tháng 6 2020

23.

Gọi H là chân đường cao hạ từ S xuống BC

\(\Rightarrow BH=SB.cos30^0=3a\) ; \(SH=SB.sin30^0=a\sqrt{3}\) ; \(CH=4a-3a=a\)

\(\Rightarrow BC=4HC\Rightarrow d\left(B;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HE\perp AC\) ; từ H kẻ \(HF\perp SE\Rightarrow HF\perp\left(SAC\right)\)

\(\Rightarrow HF=d\left(H;\left(SAC\right)\right)\)

\(HE=CH.sinC=\frac{CH.AB}{AC}=\frac{a.3a}{5a}=\frac{3a}{5}\)

\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{SH^2}\Rightarrow HF=\frac{HE.SH}{\sqrt{HE^2+SH^2}}=\frac{3a\sqrt{7}}{14}\)

\(\Rightarrow d\left(B;\left(SAC\right)\right)=4HF=\frac{6a\sqrt{7}}{7}\)

24.

\(SA=SC\Rightarrow SO\perp AC\)

\(SB=SD\Rightarrow SO\perp BD\)

\(\Rightarrow SO\perp\left(ABCD\right)\)

Câu 1: Cho hình chóp S.ABCD có \(SA\perp\left(ABCD\right)\) , \(SA=\sqrt{3}AB\) và ABCD là hình vuông . Tính số đo góc giữa hai đường thẳng SB và CD A. 300 B. 450 C. 600 D. 900 Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và \(SA\perp\left(ABCD\right)\) . Biết AB = a , \(SA=a\sqrt{6}\) , tính số đo giữa đường thẳng SC và mặt phẳng ( ABCD ) A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp S.ABCD có đáy ABCD là...
Đọc tiếp

Câu 1: Cho hình chóp S.ABCD có \(SA\perp\left(ABCD\right)\) , \(SA=\sqrt{3}AB\) và ABCD là hình vuông . Tính số đo góc giữa hai đường thẳng SB và CD

A. 300

B. 450

C. 600

D. 900

Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và \(SA\perp\left(ABCD\right)\) . Biết AB = a , \(SA=a\sqrt{6}\) , tính số đo giữa đường thẳng SC và mặt phẳng ( ABCD )

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và \(SA\perp\left(ABCD\right)\) . Biết \(AD=a\sqrt{2}\) , CD = a , \(SD=a\sqrt{5}\) , tính số đo giữa đường thẳng SC và mặt phẳng (ABCD)

A. 300

B. 450

C. 600

D. 900

Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông , \(SA\perp\left(ABCD\right)\) , SA = AB và M là trung điểm SB . Tính số đo giữa hai đường thẳng AM và BD

A. 300

B. 450

C. 600

D. 900

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình thang cân , \(SA\perp\left(ABCD\right)\) , AD // BC , SA = AB = BC = CD = 1/2 AD . Tính số đo góc giữa đường thẳng SC và mp (ABCD)

A. 300

B. 450

C. 600

D. 900

Câu 6 : Cho hình chóp S.ABC , \(SA\perp\left(ABC\right)\) , \(\Delta\)ABC vuông tại B , SA = AB = a , BC = a\(\sqrt{3}\) . Mặt phẳng \(\left(\alpha\right)\) qua A , vuông góc với SB . Tính diện tích thiết diện của hình chóp khi cắt bởi mp \(\left(\alpha\right)\)

A. \(\frac{a^2\sqrt{10}}{5}\)

B. \(\frac{a^2\sqrt{15}}{10}\)

C. \(\frac{a^2\sqrt{6}}{8}\)

D. \(\frac{a^2\sqrt{15}}{20}\)

help me !! giải chi tiết từng câu giúp mình với ạ

1
NV
3 tháng 6 2020

Câu 1:

\(CD//AB\Rightarrow\) góc giữa SB và CD bằng góc giữa SB và AB

\(\widehat{SBA}\) là góc giữa SB và AB

\(tan\widehat{SBA}=\frac{SA}{AB}=\frac{\sqrt{3}AB}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)

Câu 2:

\(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=AB\sqrt{2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\frac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)