\(0\le a\le b\le c\le1\)

Tìm GTLN 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

\(Q=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(\le b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)+c^2\left(1-c\right)\)

\(\le\frac{4.\left(\frac{b}{2}+\frac{b}{2}+c-b\right)^3}{27}+c^2\left(1-c\right)\)

\(\le\frac{4.c^3}{27}+c^2\left(1-c\right)\)

\(=c^2\left(1-\frac{23c}{27}\right)\)

\(=\frac{23c}{54}.\frac{23c}{54}.\left(1-\frac{23c}{27}\right).\frac{2916}{529}\)

\(\le\frac{2916}{529}.\frac{\left(\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}\right)^3}{27}=\frac{108}{529}\)

Dấu = xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

1 tháng 8 2017

CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa  A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1

22 tháng 6 2020

Đợi t qua thi nhé full.

8 tháng 8 2017

Nguyễn Thanh Hằng,nguyen van tuan,Nguyễn Huy Tú,Ace Legona,... giúp mk vs

6 tháng 5 2017

bài này xài karamata là đẹp nhất nè nhanh gọn lẹ mà ko bt bn học chưa

6 tháng 5 2017

Ahaha :D giỡn xíu lớp 8 có khi AM-HM còn chưa học :3, bài này với bn phải xài khai triển Abel ;))

\(Q=\frac{1}{c+1}+\frac{ab+abc-c-1}{\left ( a+1 \right )\left ( b+1 \right )\left ( c+1 \right )}=\frac{1}{c+1}+\frac{ab-1}{\left ( a+1 \right )\left ( b+1 \right )}\)

\(=\frac{1}{c+1}+\frac{a}{a+1}+\frac{b}{b+1}-1=\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\)

Dự đoán dấu "=" rơi khi \(a=b-1=c-2=1\) nên c/m

\(\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\geq \frac{5}{12}\)

\(\Leftrightarrow \left ( \frac{a}{a+1}-\frac{1}{2} \right )+\left ( \frac{b}{b+1}-\frac{2}{3} \right )+\left ( \frac{3}{4}-\frac{c}{c+1} \right )\geq 0\)

\(\Leftrightarrow \frac{a-1}{2a+2}+\frac{b-2}{3b+3}+\frac{3-c}{4c+4}\geq 0\)

\(\Leftrightarrow \left ( 3-c \right )\left ( \frac{1}{4c+4}-\frac{1}{3b+3} \right )+\left ( 3-c+b-2 \right )\left ( \frac{1}{3b+3}-\frac{1}{2a+2} \right )+\left ( 3-c+b-2+a-1 \right )\frac{1}{2a+2}\geq 0\)

\(\Leftrightarrow \frac{\left ( c-3 \right )\left ( 4c-3b+1 \right )}{12\left ( b+1 \right )\left ( c+1 \right )}+\frac{\left ( b+1-c \right )\left ( 2a-3b-1 \right )}{6\left ( b+1 \right )\left ( a+1 \right )}+\frac{a+b-c}{2a+2}\geq 0\)

Hơi xấu nhỉ nhưng xong rồi đó :)

11 tháng 6 2017

^^Đề sai .!!!!

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)