Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thanh Hằng,nguyen van tuan,Nguyễn Huy Tú,Ace Legona,... giúp mk vs
bài này xài karamata là đẹp nhất nè nhanh gọn lẹ mà ko bt bn học chưa
Ahaha :D giỡn xíu lớp 8 có khi AM-HM còn chưa học :3, bài này với bn phải xài khai triển Abel
\(Q=\frac{1}{c+1}+\frac{ab+abc-c-1}{\left ( a+1 \right )\left ( b+1 \right )\left ( c+1 \right )}=\frac{1}{c+1}+\frac{ab-1}{\left ( a+1 \right )\left ( b+1 \right )}\)
\(=\frac{1}{c+1}+\frac{a}{a+1}+\frac{b}{b+1}-1=\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\)
Dự đoán dấu "=" rơi khi \(a=b-1=c-2=1\) nên c/m
\(\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\geq \frac{5}{12}\)
\(\Leftrightarrow \left ( \frac{a}{a+1}-\frac{1}{2} \right )+\left ( \frac{b}{b+1}-\frac{2}{3} \right )+\left ( \frac{3}{4}-\frac{c}{c+1} \right )\geq 0\)
\(\Leftrightarrow \frac{a-1}{2a+2}+\frac{b-2}{3b+3}+\frac{3-c}{4c+4}\geq 0\)
\(\Leftrightarrow \left ( 3-c \right )\left ( \frac{1}{4c+4}-\frac{1}{3b+3} \right )+\left ( 3-c+b-2 \right )\left ( \frac{1}{3b+3}-\frac{1}{2a+2} \right )+\left ( 3-c+b-2+a-1 \right )\frac{1}{2a+2}\geq 0\)
\(\Leftrightarrow \frac{\left ( c-3 \right )\left ( 4c-3b+1 \right )}{12\left ( b+1 \right )\left ( c+1 \right )}+\frac{\left ( b+1-c \right )\left ( 2a-3b-1 \right )}{6\left ( b+1 \right )\left ( a+1 \right )}+\frac{a+b-c}{2a+2}\geq 0\)
Hơi xấu nhỉ nhưng xong rồi đó :)
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
\(Q=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\)
\(\le b^2\left(c-b\right)+c^2\left(1-c\right)\)
\(=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)+c^2\left(1-c\right)\)
\(\le\frac{4.\left(\frac{b}{2}+\frac{b}{2}+c-b\right)^3}{27}+c^2\left(1-c\right)\)
\(\le\frac{4.c^3}{27}+c^2\left(1-c\right)\)
\(=c^2\left(1-\frac{23c}{27}\right)\)
\(=\frac{23c}{54}.\frac{23c}{54}.\left(1-\frac{23c}{27}\right).\frac{2916}{529}\)
\(\le\frac{2916}{529}.\frac{\left(\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}\right)^3}{27}=\frac{108}{529}\)
Dấu = xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)
CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1