K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Bất đẳng thức mang tính hoán vị của các biến nên không mất tính tổng quát,giả sử a là số lớn nhất trong các số:a,b,c

Với \(a\ge b\ge c\)thì VP âm trong khi đó VT luôn dương nên bất đẳng thức luôn đúng.

\(\Rightarrow a\ge c\ge b\)

Biến đổi biểu thức tương đương:

\(\left(a+b+c\right)^6\ge108\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\)

Mặt khác:

\(\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2=\left[\left(a-b\right)\left(c-b\right)\left(a-c\right)\right]^2\le\left(a-c\right)^2\cdot a^2\cdot c^2\)

Áp dụng bất đẳng thức AM-GM,ta được:

\(4\left(a-c\right)^2\cdot c^2\cdot a^2=2ac\cdot2ac\left(a-c\right)^2\le\frac{\left[\left(a-c\right)^2+2ac+2ac\right]^3}{27}=\frac{\left(a-c\right)^6}{27}\)

\(\Rightarrow\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\le\frac{\left(a+c\right)^2}{108}\)

\(\Rightarrow\left(a+b+c\right)^6\ge\left(a+c\right)^6\ge108\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\)

\(\Rightarrow\left(a+b+c\right)^3\ge6\sqrt{3}\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Bất đẳng thức được chứng minh.

14 tháng 7 2017

Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath

19 tháng 12 2020

Bài này mình làm một lần ở trường rồi nhưng không có điện thoại chụp được:((

Ta có: \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)+b^3\left(a-c\right)-c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{a^3\left(c-b\right)+b^3a-b^3c-c^3a+c^3b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c^3-b^3\right)+bc\left(c^2-b^2\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c-b\right)\left(a^2+bc+b^2\right)+bc\left(c-b\right)\left(c+b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left(a^3-ac^2-abc-ab^2+bc^2+b^2c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}=\dfrac{\left(c-b\right)\left[a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left[a\left(a-b\right)\left(a+b\right)-c\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a^2+ab-c-bc\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)

\(\dfrac{\left(c-b\right)\left(a-b\right)\left[a^2-c^2+ab-bc\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)\(=a+b+c\)

Vì a, b, c là các số nguyên

=> a+b+c là các số nguyên

=> Đpcm.

Đấy mình làm chi tiết tiền tiệt lắm luôn, không hiểu thì mình chịu rồi, trời lạnh mà đánh máy nhiều thế này buốt tay lắm luôn:vv

19 tháng 11 2019

Nhân tung tóe + rút gọn ta được: \(\Sigma_{cyc}a^3b^2+\Sigma_{cyc}ab^3\ge abc\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow\)\(\Sigma\frac{a^2b}{c}+\Sigma\frac{a^2}{b}\ge ab+bc+ca+a+b+c\) (*) 

(*) đúng do \(\hept{\begin{cases}\frac{a^2b}{c}+bc\ge2ab\\\frac{a^2}{b}+b\ge2a\end{cases}}\Rightarrow\hept{\begin{cases}\Sigma\frac{a^2b}{c}\ge ab+bc+ca\\\Sigma\frac{a^2}{b}\ge a+b+c\end{cases}}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

28 tháng 10 2019

Ta có :

\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)

\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ac-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2\left(b^2-1\right)+\left(b-c\right)^2\left(a^2-1\right)+\left(a-b\right)^2\left(c^2-1\right)\ge0\left(1\right)\)

Do a,b,c là các số thực dương không nhỏ hơn 1 nên (1) đúng .

Dấu đẳng thức xảy ra khi và khỉ khi : \(\hept{\begin{cases}\left(a-c\right)^2\left(b^2-1\right)=0\\\left(b-c\right)^2\left(a^2-1\right)=0\\\left(a-b\right)^2\left(c^2-1\right)=0\end{cases}\Rightarrow a=b=c}\)

28 tháng 10 2019

Dấu "=" còn xảy ra ở các TH: 

a = b = 1, c bất kì .

a = c =1, b bất kì

b = c = 1,  a bất kì

( a, b, c ko nhỏ hơn 1 )

NV
10 tháng 6 2021

Bài này đã có ở đây:

Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24