Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=3\\b=3\\c=3\end{matrix}\right.\)
\(\Rightarrow\left(a-3\right)^{2017}\left(b-3\right)^{2018}\left(c-3\right)^{2019}=0\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)
\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)
\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)
\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)
\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)
p/s: dài nhỉ =)
Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc
ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc
ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0
(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0
ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0
(b+c)(ab+ac+bc+a^2)=0
(b+c)(a+b)(a+c)=0
*th1:b+c=0=> b=-c
=> b^2017 +c^2017 =0
mà a^2017 +b^2017 +c^2017=1
=>a^2017=1 => a=1
thay vào A rồi dc A=1
các th khác tương tự
a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)
mình sẽ giải câu 3 cho bạn nhé
đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(\left(x+13\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
nhớ thank mk nhé
câu 5 nà
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)
<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)
=> điều phải chứng minh
Bài 1:
\(x^2+\frac{1}{x^2}=2\Leftrightarrow (x+\frac{1}{x})^2-2.x.\frac{1}{x}=7\Leftrightarrow (x+\frac{1}{x})^2=9\)
\(\Rightarrow x+\frac{1}{x}=3\) (do \(x>0\rightarrow x+\frac{1}{x}>0\))
\(\Rightarrow (x+\frac{1}{x})^3=27\)
\(\Leftrightarrow x^3+\frac{1}{x^3}+3x.\frac{1}{x}(x+\frac{1}{x})=27\)
\(\Leftrightarrow x^3+\frac{1}{x^3}+3.3=27\Leftrightarrow x^3+\frac{1}{x^3}=18\)
Do đó:
\(x^5+\frac{1}{x^5}=(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})-(x+\frac{1}{x})=7.18-3=123\)
Bài 2:
Ta có:
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2xz)=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z\in\mathbb{R}$
Do đó để $(x-y)^2+(y-z)^2+(z-x)^2=0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$
Hay $x=y=z$
Thay vào điều kiện thứ 2:
$\Rightarrow x^{2016}+x^{2016}+x^{2016}=3^{2017}$
$\Leftrightarrow 3.x^{2016}=3^{2017}$
$\Leftrightarrow $x=3$
$\Rightarrow y=z=x=3$
Vậy $x=y=z=3$