\(\frac{ab}{a+3b+2c}\)+\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

Ta có:

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\)\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự ta có: \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{c+a}+\frac{1}{2c}\right)\)

và \(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{c+b}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

Cộng theo vế ta có:\(VT\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)

\(\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)

Dấu "=" xảy ra khi a=b=c

18 tháng 11 2019

1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)

\(ab+bc+ca=3\). Do đó \(ab\ge1\)

Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)

\(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)

Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)

\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

Nên \(a+b+c\ge3\ge3abc\)

Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)

18 tháng 11 2019

Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được

\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Do đó ta được

\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự ta được

\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)

Cộng theo vế các BĐT trên ta được

\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM

ĐẲng thức xảy ra khi và chỉ khi a = b = c >0

11 tháng 7 2016

Ta có:

\(\frac{2a^5+3b^5}{ab}\ge5a^3+10b^3-10ab^2\)

\(\Leftrightarrow\left(a-b\right)^4\left(2a+3b\right)\ge0\).Tương tự với 2 cái còn lại được:

\(\frac{2a^5+3b^5}{ab}+\frac{2b^5+3c^5}{cb}+\frac{2c^5+3a^5}{ab}\ge15\left(a^3+b^3+c^3\right)-10\left(ab^2+bc^2+ca^2\right)\)

=>Đpcm (vì ab2+bc2+ca2=3)

Dấu = khi a=b=c=1

11 tháng 7 2016

\(f\left(x\right)=ax^2+bx+c\)

18 tháng 2 2017

ko bit

22 tháng 2 2017

lạy thánh ko biết cũng trả lời rảnh 

10 tháng 7 2017

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)

Sử dụng bất đẳng thức COSI quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{a+b+a+c}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)

\(=\frac{1}{16\left(a+b\right)}+\frac{1}{16\left(a+c\right)}+\frac{1}{8\left(b+c\right)}\)

Làm tương tự đối với 2 biểu thức kia ta dc P\(\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2017}{4}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{3}{4034}\)

17 tháng 8 2020

dùng Bất Đẳng Thức Cauchy chứng minh: với các số dương x;y;z;t 

\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\le\frac{16}{x+y+z+t}\)

dấu "=" xảy ra khi x=y=z=t áp dụng vào bài toán ta có

\(\frac{1}{2a+3b+3c}=\frac{1}{16}\cdot\frac{16}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)

từ đó tìm được maxP=502,25 dấu "=" xảy ra khi \(a=b=c=\frac{3}{4034}\)

NV
15 tháng 7 2020

\(\frac{ab}{a+3b+2c}=\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Tương tự: \(\frac{bc}{b+3c+2a}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{b}{2}\right)\) ; \(\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{a+b}+\frac{c}{2}\right)\)

Cộng vế với vế:

\(A\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}+\frac{ab}{b+c}+\frac{ca}{b+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{a+b+c}{2}\right)\)

\(A\le\frac{1}{9}.\frac{3}{2}\left(a+b+c\right)=1\)

Dấu "=" xảy ra khi \(a=b=c=2\)

2 tháng 7 2020

Bìa này muốn làm cân 2 bước nha 

Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

nó được CM như sau

áp dụng BĐT cô si ta đc 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)

dấu = xảy ra khi x=y=z

2 tháng 7 2020

Bước 2 ) Theo CM bước 1 . áp dụng ta đc

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

CM tương tự ta đc

\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

cộng zế zới zế ta đc

\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)

=> MAx A=1 khi a=b=c=2