\(\dfrac{xyz}{\left(1+3x\right)\left(z+6\right)\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Đầu tiên ta biến đổi BĐT thành

\(\left(1+3x\right)\left(1+\dfrac{8y}{x}\right)\left(1+\dfrac{9z}{y}\right)\left(1+\dfrac{6}{z}\right)\ge7^4\)

BĐT trên được suy ra trực tiếp từ BĐT Huygens

Đẳng thức xảy ra khi \(x=2;y=\dfrac{3}{2};z=1\)

P/s: Hay quá mới sáng nay thấy BĐT này giờ thực hành luôn

16 tháng 4 2017

5 tháng 10 2017

\(BDT\Leftrightarrow\frac{\left(1+3x\right)\left(x+8y\right)\left(y+9z\right)\left(z+6\right)}{xyz}\ge7^4\)

\(\Leftrightarrow\left(1+3x\right)\left(1+\frac{8y}{x}\right)\left(1+\frac{9z}{y}\right)\left(1+\frac{6}{z}\right)\ge7^4\)

Áp dụng BĐT Huygens ta có:

\(VT\ge\left(1+\sqrt[4]{3x\cdot\frac{8y}{x}\cdot\frac{9z}{y}\cdot\frac{6}{z}}\right)=7^4=VP\)

Khi \(x=2;y=\frac{3}{2};z=1\)

6 tháng 11 2018

làm đk ch bạn

chỉ mik vs

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)\Rightarrow a+b+c=1\)

Bài toán tương đương với việc chứng minh:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(a+1)(c+1)}\geq \frac{1}{16}\)

Thật vậy, áp dụng BĐT AM-GM ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

Tương tự:

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq \frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq \frac{3c}{16}\)

Cộng các BĐT thu được ở trên:

\(\Rightarrow \text{VT}+\frac{(a+b+c)+3}{32}\geq \frac{3}{16}(a+b+c)\)

\(\Leftrightarrow \text{VT}+\frac{1}{8}\geq \frac{3}{16}\Rightarrow \text{VT}\geq \frac{1}{16}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

20 tháng 7 2018

fix đề: CMR:\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}\)

Áp dụng AM-GM có:

\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{8\cdot8\cdot\left(1+y\right)\left(1+z\right)}}=3\sqrt[3]{\dfrac{x^3}{64}}=\dfrac{3x}{4}\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\\\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{1+y}{8}+\dfrac{1+x}{8}\ge\dfrac{3z}{4}\end{matrix}\right.\)

Cộng theo về các BĐT trên ta được:

\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{3+x+y+z}{4}\ge\dfrac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}\ge\dfrac{3x+3y+3z-x-y-z-3}{4}=\dfrac{2\left(x+y+z\right)-3}{4}\)

\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}\ge\dfrac{2\cdot3\sqrt[3]{xyz}-3}{4}=\dfrac{2\cdot3-3}{4}=\dfrac{3}{4}\)

-> Đpcm

Dấu ''='' xảy ra khi x = y = z = 1

20 tháng 7 2018

Hóng với. T cũng định up bài này

6 tháng 11 2018

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

6 tháng 11 2018

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
11 tháng 7 2017

\(BDT\Leftrightarrow\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\le\frac{\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}}{3}\)

\(\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\le\frac{\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}}{3}\)

\(\Rightarrow VT\le\frac{\frac{x+a}{x+a}+\frac{b+y}{b+y}+\frac{c+z}{c+z}}{3}=1\)

Xảy ra khi a=b=c và x=y=z

11 tháng 7 2017

Áp dụng BĐT AM-Gm:

\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\ge3\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\ge3\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

Cộng 2 BĐT trên theo vế:

\(3\ge3.\frac{\sqrt[3]{abc}+\sqrt[3]{xyz}}{\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\ge\sqrt[3]{abc}+\sqrt[3]{xyz}\)(đpcm)

Dấu = xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)