\(a,b,c\) là các số thực dương và thỏa mãn \(a+b+c=3\). C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2024

a. Với mọi a;b;c ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

b.

Ta có: \(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2}\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{ac}{2}\)

Cộng vế:

\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

24 tháng 2 2024

cậu lớp mấy thế

tớ mới lớp 3 thôi mà:((

 

22 tháng 3 2021

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

22 tháng 3 2021

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

Tương tự:

\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)

Cộng theo vế:

\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)

Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)

\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Đặt vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)

Hoàn toàn TT:

\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)

\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)

Cộng theo vế:

\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)

\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)

26 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2+b^2}{ab\left(a+b\right)^3}\ge\dfrac{2ab}{ab\left(a+b\right)^3}=\dfrac{2}{\left(a+b\right)^3}\\\dfrac{b^2+c^2}{bc\left(b+c\right)^3}\ge\dfrac{2bc}{bc\left(b+c\right)^3}=\dfrac{2}{\left(b+c\right)^3}\\\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{2ca}{ca\left(c+a\right)^3}=\dfrac{2}{\left(c+a\right)^3}\end{matrix}\right.\)

\(\Rightarrow VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)

Chứng minh rằng \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{9}{8}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}2ab\le a^2+b^2\\2bc\le b^2+c^2\\2ca\le c^2+a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab\le a^2-ab+b^2\\bc\le b^2-bc+c^2\\ca\le c^2-ca+a^2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ab\left(a+b\right)\le\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\\bc\left(b+c\right)\le\left(b+c\right)\left(b^2-bc+c^2\right)=b^3+c^3\\ca\left(c+a\right)\le\left(c+a\right)\left(c^2-ca+a^2\right)=c^3+a^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3ab\left(a+b\right)\le3\left(a^3+b^3\right)\\3bc\left(b+c\right)\le3\left(b^3+c^3\right)\\3ca\left(c+a\right)\le3\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+3ab\left(a+b\right)+b^3\le4\left(a^3+b^3\right)\\b^3+3bc\left(b+c\right)+c^3\le4\left(b^3+c^3\right)\\c^3+3ca\left(c+a\right)+a^3\le4\left(c^3+a^3\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^3\le4\left(a^3+b^3\right)\\\left(b+c\right)^3\le4\left(b^3+c^3\right)\\\left(c+a\right)^3\le4\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\left(a+b\right)^3}\ge\dfrac{1}{4\left(a^3+b^3\right)}\\\dfrac{1}{\left(b+c\right)^3}\ge\dfrac{1}{4\left(b^3+c^3\right)}\\\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4\left(c^3+a^3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\)

Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}=\dfrac{9}{2}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\) ( đpcm )

Vậy \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)

\(VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{ab\left(a+b\right)^3}+\dfrac{b^2+c^2}{bc\left(b+c\right)^3}+\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{9}{4}\) ( đpcm )

26 tháng 3 2017

đề thiếu số dương à ? hay đủ

5 tháng 12 2018

Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)

                             LG

Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)

                                 \(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)

                                 \(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)

Khi đó :\(B=a+b+c+\frac{1}{abc}\)

   \(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)

\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)

 \(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy .........

4 tháng 12 2018

2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)

\(A\ge a+b+c-\frac{6}{2}\)

\(A\ge6-3\)

\(A\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)

                                 \(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)

                                 \(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)

Lấy \(\left(1\right)-\left(3\right)\)ta có:

\(2a-2c=c+b-a-b=c-a\)

\(\Rightarrow2a-2c-c+a=0\)

\(\Leftrightarrow3.\left(a-c\right)=0\)

\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)

\(\Rightarrow a=b=c=2\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)

Y
23 tháng 5 2019

+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)

\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )

\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)

\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow b=c\)

+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c

\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)

\(\Rightarrow P\le\frac{a+b+c}{16abc}\)

+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)

\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

7 tháng 12 2017

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

7 tháng 12 2017

Làm sao có thể dự đoán được dấu "=" trong bài này vậy ạ ?