\(a+b+c=1\)

CMR: \(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)

                             LG

Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)

                                 \(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)

                                 \(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)

Khi đó :\(B=a+b+c+\frac{1}{abc}\)

   \(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)

\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)

 \(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy .........

4 tháng 12 2018

2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)

\(A\ge a+b+c-\frac{6}{2}\)

\(A\ge6-3\)

\(A\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)

                                 \(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)

                                 \(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)

Lấy \(\left(1\right)-\left(3\right)\)ta có:

\(2a-2c=c+b-a-b=c-a\)

\(\Rightarrow2a-2c-c+a=0\)

\(\Leftrightarrow3.\left(a-c\right)=0\)

\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)

\(\Rightarrow a=b=c=2\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

27 tháng 3 2019

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

30 tháng 10 2016

Ta có:\(a^5+ab+b^2\ge3a^2b\)

Tương tự ta có:

\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)

\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)

Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)

\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)

Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)

\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

Giả sử \(xy\le1\) thì \(z\ge1\)

Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)

\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)

Dấu = khi \(a=b=c=1\)

30 tháng 10 2016

sao chứng minh đc \(a^5+ab+b^2\ge3a^2b\)vậy bạn

28 tháng 3 2019

Cosi + Svac-xơ

Có : \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)

\(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le\frac{1}{4-\frac{a+b}{2}}+\frac{1}{4-\frac{b+c}{2}}+\frac{1}{4-\frac{c+a}{2}}\)

\(=-\left(\frac{1}{\frac{a+b}{2}-4}+\frac{1}{\frac{b+c}{2}-4}+\frac{1}{\frac{c+a}{2}-4}\right)\le\frac{-\left(1+1+1\right)^2}{a+b+c-12}=\frac{-9}{3-12}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

1 tháng 5 2020

hơi phiền bn,bn có thẻ chỉ mik k ?

31 tháng 3 2017

Ta có \(\sum\limits^{ }_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum\limits^{ }_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\sum\limits^{ }_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có:

\(\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)

Cộng hai bất đẳng thức ta được:

\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ac}}\ge3\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

6 tháng 7 2015

tách ra mình làm cho. để cả đống này k làm đc đâu

11 tháng 5 2016

ý a, áp dụng BĐT cô si có 

   a + b >= căn ab     dấu = xay ra a=b

b + c >= căn bc         dau = xay ra khi b=c

c+a >= căn ac           dau = xay ra khi a=c

công tung ve vao. rut gon ta dc điều phải chung minh