K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

Cách 1

Áp dụng bđt Cauchy ta có

\(\frac{a^3}{b}+b+1\ge3a,\frac{b^3}{c}+c+1\ge3b,\frac{c^3}{a}+a+1\ge3a\)

Cộng từng vế 3 bđt trên ta có

\(A=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a+b+c\right)-3\)

Mặt khác (a+b+c)2+3(a+b+c)\(\ge\)18      (biến đổi tương đương là c/m được)

Đặt m=a+b+c

=> t2+3t-18\(\ge\)0

=> t\(\ge\)3

=> A\(\ge\)3

Dấu "=" xảy ra khi   a=b=c=1

19 tháng 6 2019

Cách 2,rất phức tạp :(

\(6=a+b+c+ab+bc+ca\le\frac{\left(a+b+c\right)^2+3\left(a+b+c\right)}{3}\)

Suy ra \(\left(a+b+c\right)^2+3\left(a+b+c\right)-18\ge0\)

\(\Leftrightarrow a+b+c\ge3\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge9\).

Mà \(VT\le3\left(a^2+b^2+c^2\right)\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Leftrightarrow a^2+b^2+c^2\ge3\)

Ta chứng minh BĐT sau = sos cho đẹp: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^3}{b}-\frac{a^2b}{b}\right)\ge0\Leftrightarrow\Sigma_{cyc}\frac{a^2\left(a-b\right)}{b}-\Sigma_{cyc}a\left(a-b\right)+\Sigma_{cyc}a\left(a-b\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{a^2\left(a-b\right)^2}{b}+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{a^2\left(a-b\right)^2}{b}+\frac{1}{2}\left(a-b\right)^2\ge0\Leftrightarrow\left(a-b\right)^2\left(\frac{a^2}{b}+\frac{1}{2}\right)\ge0\) (đúng)

Do vậy: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3^{\left(đpcm\right)}\)

Xảy ra đẳng thức khi a = b = c = 1

7 tháng 3 2017

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{matrix}\right.\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\) ( đpcm )

\(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)

\(\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)( đpcm )

8 tháng 3 2017

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(\sum\frac{a^2}{a+\sqrt[3]{bc}}\geq\sum\frac{a^2}{a+\frac{b+c+1}{3}}=\sum\frac{9a^2}{3(3a+b+c)+a+b+c}\)

\(=\sum\frac{9a^2}{10a+4b+4c}\geq\frac{9(a+b+c)^2}{(10a+4b+4c)}=\frac{9(a+b+c)^2}{18(a+b+c)}=\frac{3}{2}\)

22 tháng 3 2021

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

22 tháng 3 2021

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Lời giải:

Do \(3=ab+bc+ac\) nên ta có:

\(P=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\)

\(=\frac{a^3}{b^2+ab+bc+ac}+\frac{b^3}{c^2+ab+bc+ac}+\frac{c^3}{a^2+ab+bc+ac}\)

\(=\frac{a^3}{(b+c)(b+a)}+\frac{b^3}{(c+a)(c+b)}+\frac{c^3}{(a+b)(a+c)}\)

Áp dụng BĐT AM-GM:

\(\frac{a^3}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

\(\frac{b^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq 3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)

\(\frac{c^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq 3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)

Cộng các BĐT trên vào và rút gọn:

\(\Rightarrow P+\frac{a+b+c}{2}\geq \frac{3}{4}(a+b+c)\)

\(\Rightarrow P\geq \frac{a+b+c}{4}(1)\)

Ta có một hệ quả quen thuộc của BĐT AM-GM đó là:

\((a+b+c)^2\geq 3(ab+bc+ac)\Leftrightarrow (a+b+c)^2\geq 9\)

\(\Rightarrow a+b+c\geq 3(2)\)

Từ \((1); (2)\Rightarrow P\geq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

5 tháng 4 2018

thầy ơi Chứng minh a + b + c \(\ge3\sqrt[3]{abc}\) kiểu j ạ

26 tháng 7 2018

Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}+2a+2b+2c\)

\(=\left(\dfrac{a^3}{bc}+b+c\right)+\left(\dfrac{b^3}{ca}+a+c\right)+\left(\dfrac{c^3}{ab}+a+b\right)\ge3\sqrt[3]{\dfrac{a^3}{bc}.b.c}+3\sqrt[3]{\dfrac{b^3}{ca}.a.c}+3\sqrt[3]{\dfrac{c^3}{ab}.a.b}=3a+3b+3c\)

\(\Rightarrow\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}+2a+2b+2c\ge3a+3b+3c\)

\(\Rightarrow\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a+b+c\)

\("="\Leftrightarrow a=b=c\)

26 tháng 7 2018

Ta có: \(A=\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)(do \(a;b;c>0\) )

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)(\("="\Leftrightarrow a=b=c\))

\(A=\dfrac{a^4+b^4+c^4}{abc}=\dfrac{\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2}{abc}\ge\)

\(\ge\dfrac{a^2b^2+b^2c^2+c^2a^2}{abc}\ge\dfrac{abc\left(a+b+c\right)}{abc}=a+b+c\)

24 tháng 2 2018

câu hỏi là gì ?

24 tháng 2 2018

xin lỗi, mình đánh thiếu. Chứng minh: P=1

15 tháng 1 2019

\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)\(\Rightarrow x+y+z=3\)

\(VT=\sum\dfrac{xyz}{yz+x^2}\le\sum\dfrac{xyz}{2x\sqrt{yz}}=\dfrac{1}{2}\sum\sqrt{yz}\le\dfrac{1}{2}\sum x=\dfrac{3}{2}\)