\(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Áp dụng bất đẳng thức Holder ta được:

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

\(\left(1+b^3\right)\left(1+c^3\right)\left(1+c^3\right)\ge\left(1+bc^2\right)^3\)

\(\left(1+c^3\right)\left(1+a^3\right)\left(1+a^3\right)\ge\left(1+ca^2\right)^3\)

Nhân từng vế của 3 bất đẳng thức trên ta được:

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

21 tháng 8 2020

Chú ý đến giả thiết a + b + c = 1 ta viết được \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1-c\right)\left(1+c\right)}}=\)\(\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}=\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}\)\(=\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)

Mặt khác áp dụng bất đẳng thức Cauchy ta được \(a^2+b^2+2\left(ab+bc+ca\right)\ge2ab+2\left(ab+bc+ca\right)=\)\(2\left(ab+bc\right)+2\left(ab+ca\right)\)và \(a+b\ge2\sqrt{ab}\)

Từ đó dẫn đến \(\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{ab}{2\sqrt{ab}\sqrt{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)\(=\frac{1}{2}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)

Mà theo bất đẳng thức quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có: \(\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\le\sqrt{\frac{1}{4}\left(\frac{ab}{2\left(ab+bc\right)}+\frac{ab}{2\left(ab+ca\right)}\right)}\)

\(=\frac{1}{2\sqrt{2}}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}=\frac{1}{2\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)

Từ đó ta có bất đẳng thức: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+a\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}\)(2) ; \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)(3)

Cộng theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+c\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)\(\le\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\)

Ta cần chứng minh\(\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\le\frac{3\sqrt{2}}{8}\)

Hay \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\le3\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)

\(\le\sqrt{3\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}+\frac{a}{a+b}\right)}=3\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 8 2020

Sửa đề: \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)

15 tháng 1 2018

đặt ab=x, bc=y, ac=z

suy ra \(x^3+y^3+z^3=3xyz\)

pt thanh nhân tử \(\left(x+y+z\right)\left(x^2+y^2+z^2-xz-xy-yz\right)=0\)

do x,y,z>0suy ra x+y+z>0

nên suy ra \(x^2+y^2+z^2-xz-yz-xy=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2xy-2yz=0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

suy ra x=y=z

thế vào pt ta có dpcm

13 tháng 1 2019

sử dụng bđt phụ: \(\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)\ge\left(1+xyz\right)^3\)

Biến đổi tương đương

khi đó: \(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

Tương tự có đpcm

6 tháng 1 2018

sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)

Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)

dấu = xảy ra <=>a=b=c>0

Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)

^_^

27 tháng 5 2018

Nhầm, bỏ bớt 1 cái 1/3 đi

27 tháng 5 2018

tích đi rồi Pain làm