K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

\(VT=\left(\dfrac{b}{a}+\dfrac{b}{c}\right)+\left(\dfrac{c}{a}+\dfrac{c}{b}\right)+\left(\dfrac{a}{b}+\dfrac{a}{c}\right)\)

Ta có \(\left(\dfrac{b}{c}+\dfrac{b}{a}\right)\left(a+c\right)\ge\left(\sqrt{b}+\sqrt{b}\right)^2=4b\Leftrightarrow\dfrac{b}{c}+\dfrac{b}{a}\ge\dfrac{4b}{a+c}\)

CMTT \(\Leftrightarrow\left(\dfrac{c}{a}+\dfrac{c}{b}\right)\ge\dfrac{4c}{a+b};\dfrac{a}{b}+\dfrac{a}{c}\ge\dfrac{4a}{b+c}\)

Cộng VTV ta đc đpcm

Dấu \("="\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
14 tháng 4 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}\)

\(\Rightarrow \frac{a}{b}+\frac{a}{c}\geq \frac{4a}{b+c}(1)\)

Hoàn toàn tương tự: \(\frac{b}{c}+\frac{b}{a}\geq \frac{4b}{c+a}(2)\)

\(\frac{c}{a}+\frac{c}{b}\geq \frac{4c}{a+b}(3)\)

Lấy \((1)+(2)+(3)\Rightarrow \frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(\Leftrightarrow \frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

2 tháng 12 2017

Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)

\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)

Thật vậy, ta có:

\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)

Vậy ta cần chứng minh:

\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c


1 tháng 12 2017

1) Áp dụng BĐT Cô si

ta có

\(\left(\sqrt{a+b}-\dfrac{1}{2}\right)^2\ge0\forall a,b\inĐK\)

\(\Leftrightarrow a+b-2\sqrt{a+b}.\dfrac{1}{2}+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)

vậy ĐPCM

19 tháng 5 2018

Bài 2

Áp dụng bđt Cauchy ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có:

\(\Rightarrow VP\le4\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta có \(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\dfrac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\dfrac{1}{2}\right)^2\ge2.2\sqrt{ab}.\dfrac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có:

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\ge VP\)

\(\Rightarrowđpcm\)

13 tháng 1 2021

Áp dụng bất đẳng thức Schwarz và AM - GM ta có:

\(VT=\dfrac{a^2}{ab}+\dfrac{b^2}{bc}+\dfrac{c^2}{ca}+\dfrac{a+b+c}{\sqrt{3\left(a^2+b^2+c^2\right)}}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{3\left(a+b+c\right)}{\sqrt{3\left(a^2+b^2+c^2\right)}}-\dfrac{2\left(a+b+c\right)}{\sqrt{3\left(a^2+b^2+c^2\right)}}\)

\(\ge2\sqrt{\dfrac{3\left(a+b+c\right)^3}{\left(ab+bc+ca\right)\sqrt{3\left(a^2+b^2+c^2\right)}}}-\dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(=2\sqrt[4]{\dfrac{3\left(a+b+c\right)^6}{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}}-2\)

\(\ge2\sqrt[4]{\dfrac{3\left(a+b+c\right)^6}{\dfrac{\left(ab+bc+ca+ab+bc+ca+a^2+b^2+c^2\right)^3}{27}}}-2\)

\(=6-2=4=VP\left(đpcm\right)\).

NV
13 tháng 1 2021

Đặt vế trái của biểu thức là P

\(P=\dfrac{a^2}{ab}+\dfrac{b^2}{bc}+\dfrac{c^2}{ca}+\dfrac{a+b+c}{\sqrt{3\left(a^2+b^2+c^2\right)}}\)

\(P\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{a+b+c}{\sqrt{3\left(a^2+b^2+c^2\right)}}\)

\(P\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}+\dfrac{\left(a+b+c\right)^2}{6\left(ab+bc+ca\right)}+\dfrac{\left(a+b+c\right)^2}{6\left(ab+bc+ca\right)}+\dfrac{a+b+c}{\sqrt{12\left(a^2+b^2+c^2\right)}}+\dfrac{a+b+c}{\sqrt{12\left(a^2+b^2+c^2\right)}}\)

\(P\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}+4\sqrt[4]{\dfrac{\left(a+b+c\right)^6}{432\left(ab+bc+ca\right)\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}\)

\(P\ge2+4\sqrt[4]{\dfrac{\left(a+b+c\right)^6}{432\left(\dfrac{2ab+2bc+2ca+a^2+b^2+c^2}{3}\right)^3}}\)

\(P\ge2+4\sqrt[4]{\dfrac{\left(a+b+c\right)^6}{16\left(a+b+c\right)^6}}=4\)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 12 2017

1) áp dụng cauchy cho (a+b) và 1/4

\(\frac{\left(a+b\right)+\frac{1}{4}}{2}\ge\sqrt{\left(a+b\right)\cdot\frac{1}{4}}\)

\(\Rightarrow a+b+\frac{1}{4}\ge\sqrt{a+b}\) (Đẳng thức khi \(a+b=\frac{1}{4}\))

2) Ta có: \(\left(x+\frac{1}{2}\right)^2=x^2+x+\frac{1}{4}>x\)

\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>a+b=\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}};\)

với x,y>0 ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\ge\frac{4}{\frac{1}{a}+\frac{1}{b}}\)\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>\frac{4}{\frac{1}{a}+\frac{1}{b}};\)

Tương tự với \(\left(b+c+\frac{1}{2}\right)^2\) và \(\left(c+a+\frac{1}{2}\right)^2\)Ta có:

\(\left(a+b+\frac{1}{2}\right)^2+\left(b+c+\frac{1}{2}\right)^2+\left(c+a+\frac{1}{2}\right)^2\)

                                               \(>4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)\)

Không xảy ra đẳng thức (Nếu vế trái là \(\left(a+b+\frac{1}{4}\right)^2+\left(b+c+\frac{1}{4}\right)^2+\left(c+a+\frac{1}{4}\right)^2\) Thì mới xảy ra đẳng thức.

1 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

NV
17 tháng 12 2020

\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)

\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
24 tháng 5 2021

Bài này có bạn giải rồi:

Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24

25 tháng 12 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{9}{a+b+c}\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(\Leftrightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}+9\) \(\ge4\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)

\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}+12\ge4\left(3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\)
\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\ge4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\).
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ta có:
\(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\le\dfrac{1}{4}\left(\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}\right)\) \(=\dfrac{1}{4}\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\).
Suy ra \(4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\le\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\) 9 (đpcm).




NV
20 tháng 12 2020

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge5-\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Do \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}=\dfrac{2a^2}{ab+ac}+\dfrac{2b^2}{bc+ab}+\dfrac{2c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Điều này hiển nhiên đúng do:

\(VT=\dfrac{2}{3}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}+\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\dfrac{12\left(a+b+c\right)^2\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=5\)

Dấu "=" xảy ra khi \(a=b=c\)