Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a}{b\left(b^2+a\right)}+\dfrac{b}{c\left(c^2+b\right)}+\dfrac{c}{a\left(a^2+c\right)}\)
\(VT=\dfrac{a+b^2-b^2}{b\left(b^2+a\right)}+\dfrac{b+c^2-c^2}{c\left(c^2+b\right)}+\dfrac{c+a^2-a^2}{a\left(a^2+c\right)}\)
\(VT=\dfrac{1}{b}-\dfrac{b}{b^2+a}+\dfrac{1}{c}-\dfrac{c}{c^2+b}+\dfrac{1}{a}-\dfrac{a}{a^2+c}\)
\(VT=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\left(\dfrac{b}{b^2+a}+\dfrac{c}{c^2+b}+\dfrac{a}{a^2+c}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{b}{b^2+a}\le\dfrac{b}{2b\sqrt{a}}=\dfrac{1}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại tao có
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\sqrt{\dfrac{1}{a}}\le\dfrac{\dfrac{1}{a}+1}{2}\)
Tương tự ta có
\(\sqrt{\dfrac{1}{b}}\le\dfrac{\dfrac{1}{b}+1}{2};\sqrt{\dfrac{1}{c}}\le\dfrac{\dfrac{1}{c}+1}{2}\)
Thu lại ta có
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3}{2}\right)\)
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)
Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)
Khi đó ta cần chứng minh:
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)
Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)
Khi đó đẳng thức trên được viết lại thành:
\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)
Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)
Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)
Khi đó bđt đã tro chở thành:
\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)
Từ BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow VT\ge1+\dfrac{3}{\dfrac{\left(a+b+c\right)^2}{3}}\ge\dfrac{6}{a+b+c}\)
Cần chứng minh \(1+\dfrac{3}{\dfrac{t^2}{3}}-\dfrac{6}{t}\ge0\left(t=a+b+c\right)\)\(\Leftrightarrow\dfrac{\left(t-3\right)^2}{t^2}\ge0\)
Bài 1:
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)
Ta sẽ chứng minh nó là GTLN
Thật vậy ta cần chứng minh
\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)
\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng theo vế ta có:
\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)
Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng
Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3:
Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là
\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:
\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)
Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)
\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)
\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM
Đẳng thức xảy ra khi \(a=b=c=1\)
T/b:Vâng, rất giỏi
\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{1}{9}\left(a+b+c\right)^3}=\dfrac{1^2}{1+\dfrac{1}{9}.1^3}=\dfrac{9}{10}\)
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)
Ta có:
\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)
\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)
Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)
\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)
\(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng
\(\Rightarrow\left(1\right)\) đúng
Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)
\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)
\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)
\(=2\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và AM - GM có:
\(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}=\dfrac{a^6}{abc}+\dfrac{b^6}{abc}+\dfrac{c^6}{abc}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Dấu " = " khi a = b = c = 1
Vậy...
Lời giải khác:
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} \frac{a^5}{bc}+abc\geq 2\sqrt{a^6}=2a^3\\ \frac{b^5}{ac}+abc\geq 2\sqrt{b^6}=2b^3\\ \frac{c^5}{ab}+abc\geq 2\sqrt{c^6}=2c^3\end{matrix}\right.\Rightarrow \frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq 2(a^3+b^3+c^3)-3abc\)
Mặt khác, cũng theo BĐT AM-GM:
\(a^3+b^3+c^3\geq 3abc\Rightarrow 2(a^3+b^3+c^3)-3abc\geq a^3+b^3+c^3\)
Kéo theo \(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq a^3+b^3+c^3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)