Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BDT Bunhiacopxki:
\(\left[\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{x+z}\right)^2\right]\left[\frac{x^2}{\left(\sqrt{x+y}\right)^2}+\frac{y^2}{\left(\sqrt{y+z}\right)^2}+\frac{z^2}{\left(\sqrt{x+z}\right)^2}\right]\)\(\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(x+y+z\right)\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{x+y+z}{2}\)
Ta có: \(\dfrac{a^2}{b^2}+1\ge2\sqrt{\dfrac{a^2}{b^2}}=\dfrac{2a}{b}\)
Tương tự: \(\dfrac{b^2}{c^2}+1\ge\dfrac{2b}{c}\) ; \(\dfrac{c^2}{a^2}+1\ge\dfrac{2c}{a}\)
\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\) (1)
Mà \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)
\(\Rightarrow\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+3\) (2)
(1);(2) \(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+3\)
\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng cách đánh giá quen thuộc
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)
Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Ta cần chứng minh được
\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :3
Với x dương, ta có đánh giá:
\(\dfrac{x}{1+x^2}\le\dfrac{36x+3}{50}\)
Thật vậy, BĐT tương đương:
\(\left(x^2+1\right)\left(36x+3\right)\ge50x\)
\(\Leftrightarrow36x^3+3x^2-14x+3\ge0\)
\(\Leftrightarrow\left(3x-1\right)^2\left(4x+3\right)\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}\le10.\dfrac{36\left(a+b+c\right)+9}{50}=9\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1) Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) :
Ta có : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Áp dụng bđt Svacxơ ta có : VT >= (a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP
=> đpcm