Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Holder:
\((a^7+b^7+c^7)(a+b+c)(a+b+c)\geq (a^3+b^3+c^3)^3\)
\(\Rightarrow P=a^7+b^7+c^7\geq \frac{(a^3+b^3+c^3)^3}{(a+b+c)^2}\) \((1)\)
Tiếp tục Holder:
\((a^3+b^3+c^3)(1+1+1)(1+1+1)\geq (a+b+c)^3\)
\(\Rightarrow (a+b+c)\leq \sqrt[3]{9(a^3+b^3+c^3)}\) \((2)\)
Từ \((1),(2)\Rightarrow P\geq \frac{\sqrt[3]{(a^3+b^3+c^3)^7}}{\sqrt[3]{81}}\) \((3)\)
Áp dụng BĐT AM-GM:
\((a^3+b^3+c^3)^2\geq 3(a^3b^3+b^3c^3+c^3a^3)\geq 3\)
\(\Rightarrow a^3+b^3+c^3\geq \sqrt{3}\) \((4)\)
Từ \((3),(4)\Rightarrow P\geq \sqrt[6]{\frac{1}{3}}\)
Vậy \(P_{\min}=\sqrt[6]{\frac{1}{3}}\Leftrightarrow a=b=c=\sqrt[6]{\frac{1}{3}}\)
Bài 2:
Áp dụng BĐT AM-GM:
\(a^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{a^3.\sqrt{\frac{1}{27^2}}}=a\)
\(b^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{b^3.\sqrt{\frac{1}{27^2}}}=b\)
\(c^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{c^3.\sqrt{\frac{1}{27^2}}}=c\)
Cộng theo vế:
\(a^3+b^3+c^3+6\sqrt{\frac{1}{27}}\geq a+b+c\)
Áp dụng BĐT AM-GM:
\((a+b+c)^2\geq 3(ab+bc+ac)=3\Rightarrow a+b+c\geq \sqrt{3}\)
Do đó, \(a^3+b^3+c^3\geq \sqrt{3}-6\sqrt{\frac{1}{27}}=\sqrt{\frac{1}{3}}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)
Lời giải:
Bài 1:
Áp dụng BĐT Cô -si ta có:
\(a^3+1+1\geq 3\sqrt[3]{a^3}=3a\)
\(b^3+1+1\geq 3\sqrt[3]{b^3}=3b\)
Cộng theo vế:
\(a^3+b^3+4\geq 3(a+b)\)
\(\Leftrightarrow 6\geq 3(a+b)\Leftrightarrow a+b\leq 2\)
Vậy \((a+b)_{\max}=2\). Dấu bằng xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cô- si ta có:
\(\frac{a^3}{b+c}+\frac{b+c}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8}}=\frac{3}{2}a\)
\(\frac{b^3}{c+a}+\frac{c+a}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8}}=\frac{3}{2}b\)
\(\frac{c^3}{a+b}+\frac{a+b}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8}}=\frac{3}{2}c\)
Cộng theo vế:
\(T+\frac{1}{2}(a+b+c)+\frac{3}{2}\geq \frac{3}{2}(a+b+c)\)
\(\Leftrightarrow T\geq a+b+c-\frac{3}{2}\)
Theo BĐT Cô-si: \(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow T\geq 3-\frac{3}{2}=\frac{3}{2}\)
Vậy \(T_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Bài 3:
Điều kiện đề bài tương đương với:
\(a\leq 1; b+2a\leq 4; 2c+3b+6a\leq 18\)
Ta có:
\(A=2\left (\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)+\frac{1}{3}\left(\frac{1}{2a}+\frac{1}{b}\right)+\frac{1}{2a}\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)(6a+3b+2c)\geq (1+1+1)^2\)
\(\Rightarrow \frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\geq \frac{9}{6a+3b+2c}\geq \frac{9}{18}=\frac{1}{2}\) (1)
\(\left(\frac{1}{2a}+\frac{1}{b}\right)(2a+b)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{2a}+\frac{1}{b}\geq \frac{4}{2a+b}\geq \frac{4}{4}=1\) (2)
\(\frac{1}{2a}\geq \frac{1}{2.1}=\frac{1}{2}\) (3)
Từ (1)(2)(3) suy ra \(A\geq 2.\frac{1}{2}+\frac{1}{3}.1+\frac{1}{2}=\frac{11}{6}\)
Dấu bằng xảy ra khi \(a=1; b=2; c=3\)
3: =>a^3+b^3+c^3>=3abc
=>(a+b)^3+c^3-3ab(a+b)-3abc>=0
=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0
=>a^2+b^2+c^2-ab-bc-ac>=0
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)
đăng từ hqua mà k ai cmt hả :) ngai vàng bưu điện là của mị :v
Bài 3:
Ta có: \(a^2+b^2+c^2=3\ge ab+bc+ca\) ( tự cm bđt nha )
Áp dụng bất đẳng thức Schwarz ta có:
\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+bc}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Dấu " = " khi a = b = c = 1
Bài 4:
Ta có: \(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
( BĐT AM - GM )
Tương tự \(\Rightarrow\dfrac{b^3}{c^2+a^2}\ge b-\dfrac{c}{2}\)
\(\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\)
\(\Rightarrow VT\ge\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{2}\)
Dấu " = " khi a = b = c
Tiếp sức cho Tú đệ
Bài 1: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\dfrac{a^3+b^3}{ab}\ge\dfrac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge VP."="\Leftrightarrow a=b=c\)
Bài 2: Holder:
\(\left(\dfrac{a^4}{bc^2}+\dfrac{b^4}{ca^2}+\dfrac{c^4}{ab^2}\right)\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\left(c+a+b\right)\ge\left(a+b+c\right)^3\)
Cần chứng minh \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)
AM-GM: \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}\cdot\dfrac{ca}{b}}=2c\)
Tương tự rồi cộng theo vế:
\("=" \Leftrightarrow a=b=c\)