Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta viết lại bất đẳng thức trên thành:
\(\frac{a-b}{b}-\frac{a-b}{c}+\frac{c-a}{a}-\frac{c-a}{c}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Hay: \(\frac{\left(a-b\right)\left(c-b\right)}{bc}+\frac{\left(c-a\right)^2}{ca}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Tiếp tục khai triển và thu gọn ta được:
\(\Leftrightarrow b\left(c-a\right)^2\left(b^2+ab+bc\right)\ge a\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\left(b-ac\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng hay bài toán được chứng minh xong.
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cách khác:
Áp dụng BĐT Cô-si cho các số dương ta có:
$\frac{a^2}{b}+b\geq 2a$
$\frac{b^2}{c}+c\geq 2b$
$\frac{c^2}{a}+a\geq 2c$
Cộng theo vế và thu gọn ta được:
$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)
Ta chọn \(k=2\)hay nhân 2 vế với 4
*Xét hiệu 2 vế bất đẳng thức.
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)
\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)
\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)
Bạn khai triển \(xy+yz+zx\) và rút gọn là sẽ xong bài toán, kết quả hình như ra \(-1\)
Việc khai triển tính toán là rất đơn giản nhưng khá dài dòng và cần kiên nhẫn nên nhường bạn tự làm :D
Khi ấy ta có \(x^2+y^2+z^2-2+2=\left(x+y+z\right)^2+2\ge2\)