K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

http://olm.vn/hoi-dap/question/595391.html

Bài giải đây bạn nhé! Mà bạn xem lại đề bài , sao lại từ a,b,c lại chuyển qua x,y,z vậy?

30 tháng 5 2016

cảm ơn bạn nhìu nhé

30 tháng 5 2016

Đề bài đúng : Cho a,b,c là các số thoả mãn : \(a^2+b^2+c^2\le8\) Tìm giá trị nhỏ nhất của 

Ta có : \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(\Rightarrow ab+bc+ac\ge\frac{-\left(a^2+b^2+c^2\right)}{2}\ge-4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=8\\a+b+c=0\end{cases}}\)

Mặt khác : \(\frac{a^2+b^2}{2}\ge-ac\Rightarrow ac\ge\frac{-\left(a^2+b^2\right)}{2}\ge\frac{-\left(a^2+b^2+c^2\right)}{2}\ge-4\)

\(\Rightarrow ab+bc+2ac\ge-4-4=-8\)

Min \(ab+bc+2ac=-8\Leftrightarrow a=2,b=0,c=-2\)

22 tháng 3 2019

Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)

\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)

Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)

"="<=>a=b=c=3

29 tháng 10 2019

Bài này hay:)

c = min {a,b,c}. Đặt

\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)

\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)

\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)

\(b=y+c=\frac{2y-x+3}{3}\)

Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

Giờ em đang bận, tối em làm tiếp!

NV
29 tháng 10 2019

\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)

\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)

\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)

\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)

Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)

Cộng vế với vế:

\(K\le4\left(a+b+c\right)=12\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

24 tháng 1 2018

nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé

23 tháng 1 2018

Nhỏ nhất hay lớn nhất

NV
27 tháng 10 2019

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc