Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(bc(y-z)^{2}+ac(x-z)^{2}+ab(x-y)^{2}\)
\(=(abx^2+cax^2)+(bcy^2+aby^2)+(caz^2+bcz^2)-2(ax.by+by.cz+cz.ax)\)
\(=ax^2(2017-a)+by^2(2017-b)+cz^2(2017-c)-2(ax.by+by.cz+cz.ax)\)
\(=2017(ax^2+by^2+cz^2)-[a^2x^2+b^2y^2+c^2z^2+2(ax.by+by.cz+cz.ax)]\)
\(=2017(ax^2+by^2+cz^2)-(ax+by+cz)^2\)
\(=2017(ax^2+by^2+cz^2)\)
Vậy \(P=\dfrac{1}{2017}\)
bài của bạn Phạm Quốc Cường phải là 2007 chứ không phải 2017
21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.
23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)
Chia cả hai vế của đẳng thức trên với \(y^2>0\)được :
\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)
\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)
Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :
\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)