K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

3 tháng 7 2016

Ta có:

\(S=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

S                                                      \(>\frac{a+b+c}{a+b+c}\)

S                                                        \(>1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

\(S=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

S                                                      \(< \frac{2.\left(a+b+c\right)}{a+b+c}\)

S                                                        \(< 2\left(2\right)\)

Từ (1) và (2) => 1 < S < 2

=> S không là số nguyên

=> đpcm

Ủng hộ mk nha ^_-

24 tháng 11 2015

ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2

Do a;b;c và d là các số nguyên dương => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số nguyên dương 
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số nguyên

13 tháng 4 2016

Ta có: a/a+b <a/a+b+c    (1)

           b/b+c <b/a+b+c     (2) 

           c/c+a <c/a+b+c      (3)

Từ (1),(2),(3)  =>    a/a+b    +   b/b+c   +    c/c+a    >     a/a+b+c  +   b/a+b+c   +    c/a+b+c

                                                                                       = a+b+c/a+b+c

                                                                                       =1

VẬY : M>1

Ta có :

              a/a+b    <   a+c/a+b+c     (1)

              b/b+c    <   b+a/a+b+c     (2)

              c/c+a     <   c+b/a+b+c     (3)

Từ (1),(2),(3) =>  a/a+b    +   b/b+c   +    c/c+a    <     a+c/a+b+c    +      b+a/a+b+c      +    c+a/a+b+c 

                                                                                   =     2.(a+b+c)/a+b+c

                                                                                   =     2

=>          1<M<2          

=>          M không phải là số nguyên

18 tháng 1 2017

Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c

Dễ thế mà chẳng ai làm được..

20 tháng 6 2017

Kẹp 1<S<2 ^^