Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tặng 100k cho ai giải dc bài này từ ngày 26/8/2021 -> 27/8/2021
a,1/a+1/b+1/c=1/a+b+c
⇔(a+b)(b+c)(c+a)=0
⇔a = -b
⇔ b = -c
⇔ c = -a
⇒A=(a3+b3)(b3+c3)(c3+a3)=0
b,
vi vai tro cua a,b,c la nhu nhau nen ta gia su a+b=0 vay a+b+c=0
⇒ C = 3
Thay c=3 vao bieu thuc P ta co:
P=(a - 3 )2017 . (b - 3 )2017 . (3 - 3)2017 = 0
Vay P = 0
HT~
Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé
Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)
Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)
Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)
<=> \(ab\le1\)
<=> \(1-ab\ge0\)
Suy ra P = 2018 - 2018ab = 2018(1 - ab) \(\ge0\)
\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\) với \(a,b\in R\)
nếu \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\) thì \(P=2018>0\)
nếu \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\) thì xảy ra 2 trường hợp như sau
\(TH1\)\(a,b\) trái dấu \(\Rightarrow P>0\)
\(TH2\) \(a,b\) cùng dấu
vì \(2.a^{2018}.b^{2018}>0\forall a,b\)
\(\Rightarrow a^{2017}+b^{2017}>0\) để 2 đẳng thức tồn tại dấu \("="\)
\(\Rightarrow a,b>0\) ( cùng dương)
có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)
\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)
\(\Rightarrow ab\le1\)
\(\Rightarrow2018-2018ab>2018-2018=0\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
vậy \(P\) luôn không âm
\(P=\left(b^2c+abc\right)\left(a^2b+abc\right)\left(c^2a+abc\right)\)
\(=bc\left(a+b\right)\cdot ab\left(c+a\right)\cdot ca\left(b+c\right)\)
\(=\left(abc\right)^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lại có:
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(a^2b+abc+a^2c\right)+\left(ab^2+b^2c+abc\right)+\left(bc^2+c^2a+abc\right)-abc=0\)
\(\Leftrightarrow a^2b+ca^2+ab^2+2abc+ac^2+b^2c+bc^2=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b^2+2bc+c^2\right)+bc\left(b+c\right)=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a^2+ab+ca+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Rightarrow P=0\)
Cái này biến đổi dài vl ra í e :>>
Ta có a^3 + b^3 + c^3 -3abc=0
=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0
=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0
=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0
=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0
Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0
=> (a-b)^2 + (b-c)^2 + (c-a)^2=0
Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt
thank . Mấy chỗ đó hiểu dc