Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé
Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)
Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)
Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)
<=> \(ab\le1\)
<=> \(1-ab\ge0\)
Suy ra P = 2018 - 2018ab = 2018(1 - ab) \(\ge0\)
\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\) với \(a,b\in R\)
nếu \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\) thì \(P=2018>0\)
nếu \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\) thì xảy ra 2 trường hợp như sau
\(TH1\)\(a,b\) trái dấu \(\Rightarrow P>0\)
\(TH2\) \(a,b\) cùng dấu
vì \(2.a^{2018}.b^{2018}>0\forall a,b\)
\(\Rightarrow a^{2017}+b^{2017}>0\) để 2 đẳng thức tồn tại dấu \("="\)
\(\Rightarrow a,b>0\) ( cùng dương)
có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)
\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)
\(\Rightarrow ab\le1\)
\(\Rightarrow2018-2018ab>2018-2018=0\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
vậy \(P\) luôn không âm
\(P=\left(b^2c+abc\right)\left(a^2b+abc\right)\left(c^2a+abc\right)\)
\(=bc\left(a+b\right)\cdot ab\left(c+a\right)\cdot ca\left(b+c\right)\)
\(=\left(abc\right)^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lại có:
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(a^2b+abc+a^2c\right)+\left(ab^2+b^2c+abc\right)+\left(bc^2+c^2a+abc\right)-abc=0\)
\(\Leftrightarrow a^2b+ca^2+ab^2+2abc+ac^2+b^2c+bc^2=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b^2+2bc+c^2\right)+bc\left(b+c\right)=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a^2+ab+ca+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Rightarrow P=0\)
tặng 100k cho ai giải dc bài này từ ngày 26/8/2021 -> 27/8/2021
a,1/a+1/b+1/c=1/a+b+c
⇔(a+b)(b+c)(c+a)=0
⇔a = -b
⇔ b = -c
⇔ c = -a
⇒A=(a3+b3)(b3+c3)(c3+a3)=0
b,
vi vai tro cua a,b,c la nhu nhau nen ta gia su a+b=0 vay a+b+c=0
⇒ C = 3
Thay c=3 vao bieu thuc P ta co:
P=(a - 3 )2017 . (b - 3 )2017 . (3 - 3)2017 = 0
Vay P = 0
HT~
Cái này biến đổi dài vl ra í e :>>
Ta có a^3 + b^3 + c^3 -3abc=0
=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0
=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0
=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0
=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0
Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0
=> (a-b)^2 + (b-c)^2 + (c-a)^2=0
Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt
thank . Mấy chỗ đó hiểu dc