Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1+a+b}{2}\ge\dfrac{1+a+b+ab}{2+a+b}\)
\(\Leftrightarrow\left(1+a+b\right)\left(2+a+b\right)\ge2\left(1+a+b+ab\right)\)
\(\Leftrightarrow2+a+b+2a+a^2+ab+2b+ab+b^2\ge2+2a+2b+2ab\)
\(\Leftrightarrow a^2+b^2+2ab+3a+3b+2\ge2ab+2a+2b+2\)
\(\Leftrightarrow a^2+b^2+a+b\ge0\)
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Với a, b, c là các số nguyên dương
=> a + b > 0 ; b + c > 0 ; c + a > 0
Áp dụng bất đẳng thức Cauchy cho hai số a + b và c không âm, ta có:
\(\left(a+b\right)+c\ge2\sqrt[]{\left(a+b\right)c}\)
\(\Rightarrow1\ge\dfrac{2\sqrt[]{\left(a+b\right)c}}{a+b+c}\)
\(\Rightarrow1\ge\dfrac{2\sqrt{c}\sqrt[]{\left(a+b\right)c}}{\sqrt[]{c}\left(a+b+c\right)}\)
\(\Rightarrow1\ge\dfrac{2c\sqrt[]{a+b}}{\sqrt[]{c}\left(a+b+c\right)}\)
\(\Rightarrow\sqrt[]{c}\left(a+b+c\right)\ge2c\sqrt[]{a+b}\)
\(\Rightarrow\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\) (1)
Chứng minh tương tự \(\Rightarrow\sqrt[]{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\) (2) ;\(\sqrt[]{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c}\) (3)
Cộng hai vế của (1), (2), (3), ta được:
\(\sqrt[]{\dfrac{a}{b+c}}+\sqrt[]{\dfrac{b}{a+c}}+\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a+c=b\\b+c=a\end{matrix}\right.\)
Kết hợp với điều kiện a, b, c là các số nguyên dương => Không thể xảy ra dấu " = "
=> ĐPCM
Moi hoc lop 6 a!
Nen chang tra loi dc dau!