Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a) \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)
c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)
TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
a)Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)
\(\Rightarrow2a^2-4ab-ab+2b^2=0\)
\(\Rightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\a=2b\end{cases}}\)
Thay vào tính được P
b)sai đề
Áp dụng BDT Bunhiacopxki:
\(\left[\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{x+z}\right)^2\right]\left[\frac{x^2}{\left(\sqrt{x+y}\right)^2}+\frac{y^2}{\left(\sqrt{y+z}\right)^2}+\frac{z^2}{\left(\sqrt{x+z}\right)^2}\right]\)\(\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(x+y+z\right)\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{x+y+z}{2}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\)
\(9+ab\ge2\sqrt{9ab}=6\sqrt{ab}\)
\(\Rightarrow VT=a+b\ge\frac{2\sqrt{ab}\cdot6\sqrt{ab}}{9+ab}=\frac{12ab}{9+ab}=VP\)
Bài 2:
a)\(\frac{a^2}{a+2b^2}=a-\frac{2ab^2}{a+2b^2}\ge a-\frac{2ab^2}{3\sqrt[3]{ab^4}}=a-\frac{2}{3}\sqrt[3]{a^2b^2}\)
\(BDT\Leftrightarrow\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\le3\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[3]{b^2c^2}\le\frac{1}{3}\left(bc+b+c\right)\). Tương tự r` cộng theo vế ta có ĐPCM
b)\(\frac{a^2}{a+2b^3}=a-\frac{2ab^2}{a+2b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}b\sqrt[3]{a^2}\)
\(\ge a-\frac{2}{3}b\frac{\left(a+a+1\right)}{3}=a-\frac{2b}{9}-\frac{4ab}{9}\)
Vậy \(VT\ge a+b+c-\frac{2}{9}\left(a+b+c\right)-\frac{4}{9}\left(ab+bc+ca\right)\)
\(\ge\frac{7}{3}-\frac{4\left(a+b+c\right)^2}{27}=1=VP\)