\(\frac{\left(a+b+c\right)\left(a+b\right)}{abc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

áp dụng BĐT Cô-si,ta có :
\(1=a+b+c+d\ge2\sqrt{\left(a+b+c\right)d}\)

\(\Rightarrow1\ge4\left(a+b+c\right)d\)

\(\Rightarrow a+b+c\ge4\left(a+b+c\right)^2d\ge16\left(a+b\right)cd\)

\(A=\frac{\left(a+b+c\right)\left(a+b\right)}{abcd}\ge\frac{16\left(a+b\right)^2cd}{abcd}=\frac{16\left(a+b\right)^2}{ab}\ge64\)

Vậy GTNN của A là 64 khi \(=a=b=\frac{1}{8};c=\frac{1}{4};d=\frac{1}{2}\)

1 tháng 5 2020

Mình xử lý phần dấu "="  của @Thanh Tùng DZ@

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+b+c+d=1\\a+b+c=d\\a+b=c\end{cases}}\)và a=b

\(\Leftrightarrow\hept{\begin{cases}8a=1\\d=4a\\c=2a\end{cases}}\)và a=b

\(\Leftrightarrow a=b=\frac{1}{8};c=\frac{1}{4};d=\frac{1}{2}\)

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

24 tháng 2 2017

a=b=c=1 sai

24 tháng 2 2017

Xem lại cái đề: 

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

( 99 - 1 ) : 2 + 1 = 50 ( số )

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

Ta có:

\(a+b+c=\frac{1}{abc}\Rightarrow a^2+ab+ac=\frac{1}{bc}\)

Mà :

\(P=\left(a+b\right)\left(a+c\right)=a^2+ab+bc+ca=\frac{1}{bc}+bc\ge2\)