Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)
Khi đó:
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}\)
\(=\frac{a\left(a+c\right)+2ac}{2a\left(a+c\right)-2ac}+\frac{c\left(a+c\right)+2ac}{2c\left(a+c\right)-2ac}\)
\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=\frac{a^2}{2a^2}+\frac{3ac}{2a^2}+\frac{c^2}{2c^2}+\frac{3ac}{2c^2}\)
\(=\frac{1}{2}+\frac{3c}{2a}+\frac{1}{2}+\frac{3a}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\ge1+\frac{3}{2}\cdot2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=1+3=4\) (Cauchy)
Dấu "=" xảy ra khi: \(a=b=c\)
từ cái đã cho suy ra được \(\frac{2a-b}{ab}=\frac{1}{c}\Rightarrow2a-b=\frac{ab}{c}\)
Chứng minh tương tự =>2c-b=bc/a
Đặt \(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\)
\(=c\left(\frac{1}{a}+\frac{1}{b}\right)+a\left(\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)Cái này tự chứng minh nhé
Dấu = xảy ra khi a=b=c
Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)
Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)
a/Áp dụng (1) có
\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:
\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)
Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)
b/Áp dụng (1) có:
\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)
Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)
\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)
Cộng (5),(6) và (7) có:
\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)
Ta có : \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)
\(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{\frac{a^2+3ac}{a+c}}{\frac{2a^2}{a+c}}=\frac{a^2+3ac}{2a^2}=\frac{a+3c}{2a}\left(1\right)\)
\(\frac{c+b}{2c-b}=\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{\frac{c^2+3ac}{a+c}}{\frac{2c^2}{a+c}}=\frac{c^2+3ac}{2c^2}=\frac{c+3a}{2c}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) có : \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{ac+3c^2+ac+3a^2}{2ac}=\frac{3\left(c^2+a^2\right)+2ac}{2ac}\)
Áp dụng BĐT Cauchy cho a ; c dương , ta có :
\(c^2+a^2\ge2ac\Rightarrow\frac{3\left(c^2+a^2\right)+2ac}{2ac}\ge\frac{3.2ac+2ac}{2ac}=4\)
Dấu " = " xảy ra \(\Leftrightarrow a=c\)
Mà \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) \(\Rightarrow\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=c\)
Vậy ...
tham khảo nhé :)
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)\(\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\)\(\Leftrightarrow b=\frac{2ac}{a+c}\)
Ta có : \(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{a\left(a+3c\right)}{2a^2}=\frac{a+3c}{2a}\)
tương tự : \(\frac{b+c}{2c-b}=\frac{c+3a}{2c}\)
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+3.2ac}{2ac}=\frac{8ac}{2ac}=4\)
\(\frac{a+c}{ac}=\frac{2}{b}\) => \(b=\frac{2ac}{a+c}\) thay vào BĐT cần chứng minh, ta được:
\(\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}\)
\(=\frac{2a^2c^2+3a^3c+3ac^3}{2a^2c^2}\ge4\)
<=> 3a3c-6a2c2+3ac3 ≥ 0
<=> 3ac(a-c)2 ≥ 0 luôn đúng ∀ a,c > 0
Vậy BĐT được chứng minh, đẳng thức xảy ra khi và chỉ khi a=c; b≠0
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Hình như đề sai, theo mik là nó lớn hơn bằng 3/2 nhé (ko biết đúng ko)
\(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}=\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\)
Do a,b,c là 3 số thực dương nên áp dụng BĐT Cauchy Schwarz cho 3 phân số:
\(\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{\left(a+b+c\right)^2}{ab^2c+bc^2a+ca^2b+a+b+c}\)
\(=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+\left(a+b+c\right)}=\frac{9}{3abc+3}\)(Thay a+b+c=3)
Lại có: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)(BĐT Cauchy cho 3 số)
\(\Rightarrow\frac{9}{3abc+3}\ge\frac{9}{6}=\frac{3}{2}\Rightarrow\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{3}{2}\)
\(\Rightarrow\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge\frac{3}{2}.\)
ta có \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)
thay b vào\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}\)
\(=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+6ac}{2ac}=4\)