K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NP
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TL
1
15 tháng 5 2022
áp dụng bất đẳng thức AM-GM ta có:
1/a+1/b+1/c>=9/(a+b+c)
=> 1/a+1/b+1/c>=9/1
=> 1/a+1/b+1/c>=9
12 tháng 3 2022
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
10 tháng 7 2020
Gọi \(d=gcd\left(a;b\right)\) khi đó \(a=dm;b=dn\) với \(\left(m;n\right)=1\)
Ta có:
\(c+\frac{1}{b}=a+\frac{b}{a}\Leftrightarrow c=\frac{b}{a}+a-\frac{1}{b}=\frac{dn}{dm}+dm-\frac{1}{dn}\)
\(=\frac{n}{m}+dm-\frac{1}{dn}=\frac{dn^2+d^2m^2n-m}{dmn}\)
Khi đó \(dn^2+d^2m^2n-m⋮dmn\Rightarrow m⋮n\) mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m=d\)
Khi đó \(ab=dm\cdot dn=d^3\) là lập phương số nguyên dương
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)