Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)
\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)
\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)
Theo BĐT Svacxo:
\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)
Vậy ta có đpcm.
P/s: Đúng ko ta?
Cosi + Svac-xơ
Có : \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)
\(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le\frac{1}{4-\frac{a+b}{2}}+\frac{1}{4-\frac{b+c}{2}}+\frac{1}{4-\frac{c+a}{2}}\)
\(=-\left(\frac{1}{\frac{a+b}{2}-4}+\frac{1}{\frac{b+c}{2}-4}+\frac{1}{\frac{c+a}{2}-4}\right)\le\frac{-\left(1+1+1\right)^2}{a+b+c-12}=\frac{-9}{3-12}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Từ giả thiết và BĐT AM-GM suy ra:\(\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\)3
Ta có:
P\(\ge\)\(\frac{2a^3}{3\left(a^2+b^2\right)}\)+\(\frac{2b^3}{3\left(c^2+b^2\right)}\)+\(\frac{2c^3}{3\left(a^2+c^2\right)}\)
=\(\frac{2}{3}\)(\(\frac{a\left(a^2+b^2\right)-ab^2}{\left(a^2+b^2\right)}\)+\(\frac{b\left(c^2+b^2\right)-bc^2}{\left(c^2+b^2\right)}\)+\(\frac{a\left(a^2+c^2\right)-ca^2}{\left(a^2+c^2\right)}\))
=\(\frac{2}{3}\)(a+b+c-\(\frac{ab^2}{\left(a^2+b^2\right)}\)-\(\frac{bc^2}{\left(c^2+b^2\right)}\)-\(\frac{ca^2}{\left(a^2+c^2\right)}\))
\(\ge\)\(\frac{2}{3}\)(a+b+c-\(\frac{a}{2}\)-\(\frac{b}{2}\)-\(\frac{c}{2}\))
=\(\frac{2}{3}\).\(\frac{a+b+c}{2}\)=\(\frac{a+b+c}{3}\)=\(\frac{\left(a+1\right)+\left(b+1\right)+\left(c+1\right)}{3}\)-1
\(\ge\)\(\frac{3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{3}\)-1\(\ge\)2
Vậy:MinP=2 khi a=b=c=2
cách này dễ hiểu hơn nè :
Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
Ta có : \(1\ge\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)
\(\Leftrightarrow1\ge\frac{9}{a+b+c+3}\)\(\Leftrightarrow a+b+c+3\ge9\)\(\Leftrightarrow a+b+c\ge6\)
\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab^2-a^2b}{a^2+ab+b^2}=a-\frac{ab^2+a^2b}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)
Tương tự : \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\); \(\frac{c^3}{c^2+ac+a^2}\ge c-\frac{a+c}{3}\)
Cộng cả 3 vế , ta được : \(P\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{1}{3}\left(a+b+c\right)\ge\frac{1}{3}.6=2\)
Vậy GTNN của P là 2 \(\Leftrightarrow a=b=c=2\)
TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng lại:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ca}{2}\)
\(\Rightarrow VT\ge a+b+c\)
Mặt khác:
\(\frac{9}{a+b+c}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\Rightarrow9\le3\left(a+b+c\right)\Rightarrow a+b+c\ge3\)
Khi đó:
\(VT\ge a+b+c\ge3\left(đpcm\right)\)
Dấu "=" xảy ra tại \(a=b=c=1\)
trong câu hỏi tương tự cũng có đó, bạn vào tham khảo nha
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(\frac{1}{1-bc}\le\frac{1}{1-\frac{\left(b+c\right)^2}{4}}=\frac{4}{4-\left(b+c\right)^2}=1+\frac{\left(b+c\right)^2}{4-\left(b+c\right)^2}\)
\(\le1+\frac{\left(b+c\right)^2}{4-2\left(b+c\right)^2}=1+\frac{\left(b+c\right)^2}{4\left(a^2+b^2+c^2\right)-2\left(b^2+c^2\right)}\)
\(=1+\frac{\left(b+c\right)^2}{2\left[\left(a^2+b^2\right)+\left(a^2+c^2\right)\right]}\le1+\frac{b^2}{2\left(a^2+b^2\right)}+\frac{c^2}{2\left(b^2+c^2\right)}\)
Tương tự ta có:
\(\frac{1}{1-ca}\le1+\frac{c^2}{2\left(b^2+c^2\right)}+\frac{a^2}{2\left(b^2+a^2\right)}\)
\(\frac{1}{1-ab}\le1+\frac{a^2}{2\left(c^2+a^2\right)}+\frac{b^2}{2\left(c^2+b^2\right)}\)
Cộng theo vế ta được:
\(\frac{1}{1-bc}+\frac{1}{1-ca}+\frac{1}{1-ab}\le3+\frac{a^2+b^2}{2\left(a^2+b^2\right)}+\frac{b^2+c^2}{2\left(b^2+c^2\right)}+\frac{c^2+a^2}{2\left(c^2+a^2\right)}=\frac{9}{2}\)
Vậy BĐT đc c/m
Ai giúp mình với :(( Mình cần gấp ạ
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^2+b^2+1^2\right)\left(1^2+1^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{1+a^2+b^2}=\frac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}\le\frac{2+c^2}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{1+b^2+c^2}=\frac{1+1+a^2}{\left(1+b^2+c^2\right)\left(1+1+a^2\right)}\le\frac{2+a^2}{\left(a+b+c\right)^2}\)
\(\frac{1}{1+c^2+a^2}=\frac{1+1+b^2}{\left(1+c^2+a^2\right)\left(1+1+b^2\right)}\le\frac{2+b^2}{\left(a+b+c\right)^2}\)
Cộng từng vế BĐT lại, ta được :
\(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\le\frac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{6+a^2+b^2+c^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)
Vậy BĐT đã được chứng minh