\(\ge12\)

tìm GTNN của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

Ta có: \(P^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{2a\sqrt{b}}{\sqrt{c}}+\frac{2b\sqrt{c}}{\sqrt{a}}+\frac{2c\sqrt{a}}{\sqrt{b}}\). Áp dụng BĐT Cauchy cho 4 số dương ta có:

\(\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a;\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{\sqrt{a}}+a\ge4b;\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\)

\(\Rightarrow P^2\ge3\left(a+b+c\right)\ge3.12=36\Rightarrow P\ge6\)

Xảy ra đẳng thức khi và chỉ khi a = b = c = 4

2 tháng 1 2016

\(\Leftrightarrow P\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\ge\left(x+y+z\right)^2\left(1\right)\)

Áp dụng Bu-nhi :

\(\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)^2\le\left(xy+yz+xz\right)\left(x+y+z\right)\)

\(\Leftrightarrow x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le24\)
\(\Leftrightarrow P\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\le24P\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)\(\left(x+y+z\right)^2\le24P\)

\(\Rightarrow12^2\le24P\)

\(\Rightarrow P\ge6\)
ĐẾN ĐÂY BẠN TỰ GIẢI DẤU \(=\) XẢY RA LÚC NÀO NHÉ

1 tháng 1 2016

Áp dụng Bu-nhi :

\(12^2<\left(x+y+z\right)^2=\left(\frac{\sqrt{x}}{\sqrt{\sqrt{y}}}.\sqrt{x}.\sqrt{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{\sqrt{z}}}.\sqrt{y}.\sqrt{\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{\sqrt{x}}}.\sqrt{z}.\sqrt{\sqrt{x}}\right)^2\)
\(\le\left(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\right)\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\)

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

NV
1 tháng 3 2022

\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Mặt khác:

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

31 tháng 12 2015

Min \(3\sqrt{3}\Leftrightarrow x=y=z=3\) nhỉ

31 tháng 12 2015

xin lỗi nha mk chỉ có thể làm hóa 9 thui còn toán 9 thì http://botay.com.vn

23 tháng 7 2017

trả lời nhanh lên

24 tháng 7 2017

2. BÌnh phương lên nhỉ :v

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

7 tháng 1 2019

Ta có \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\left(a,b,c>0\right)\)

\(\Leftrightarrow4a+4\sqrt{ab}+4\sqrt[3]{abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2.2\sqrt{ab}+\sqrt[3]{64abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2\sqrt{a.4b}+\sqrt[3]{a.4b.16c}=\frac{16}{3}.\)(1)

Áp dụng BDT Cauchy cho hai số dương \(a\)và \(4b\)ta được:\(2\sqrt{a.4b}\le a+4b\)(dấu bằng có \(\Leftrightarrow a=4b\))(2)

Áp dụng BDT Cauchy cho ba số dương \(a;4b\)và \(16c\)ta được:\(\sqrt[3]{a.4b.16c}\le\frac{1}{3}\left(a+4b+16c\right).\)(dấu bằng có \(\Leftrightarrow a=4b=16c\))(3)

Từ (1);(2) và (3) suy ra:

 \(\frac{16}{3}\le4a+a+4b+\frac{1}{3}\left(a+4b+16c\right).\)

\(\Leftrightarrow\frac{16}{3}\le5a+4b+\frac{1}{3}a+\frac{4}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\le\frac{16}{3}a+\frac{16}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\left(a+b+c\right)\ge\frac{16}{3}.\)

\(\Leftrightarrow a+b+c\ge1\)

\(\Rightarrow MinZ=1\)

\(\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}.\\a+b+c=1\\a=4b=16c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}\)

Vậy GTNN của \(Z\)là 1 khi và chỉ khi \(a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}.\)

P/S:Trong quá trình làm dù đã rất cố gắng song khó tránh khỏi sai sót;mong bạn lượng thứ.

7 tháng 1 2019

Đình chính:

\(MinZ=1\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\\a=4b=16c\\a+b+c=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}}\)

31 tháng 7 2019

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)

\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)

31 tháng 7 2019

à nhầm, \(a=b=c=\frac{4}{3}\) nhé