K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

Do abc=1nên ta được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+c+1}=\frac{abc}{ab+b+abc}+\frac{a}{abc+ac+a}+\frac{1}{ca+a+1}\)\(=\frac{ac}{1+a+ac}+\frac{a}{1+ac+a}+\frac{1}{ca+a+1}=1\)

Dấu "=" xảy ra khi a=b=c=1

3 tháng 9 2020

Hình như shi thiếu bước đầu =)))

\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)

Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)

\(\Rightarrow LHS\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)=\frac{1}{2}\) Vì abc=1