Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)
\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)
\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)
\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)
Cách khác:
Áp dụng BĐT Bunhiacopxky:
$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$
$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$
Tương tự với các căn thức còn lại và cộng theo vế:
$M\sqrt{5}\geq 5(a+b+c)$
$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(4+1\right)\left[\left(a+b\right)^2+b^2\right]}\ge\dfrac{1}{\sqrt{5}}\left(2a+2b+b\right)=\dfrac{1}{\sqrt{5}}\left(2a+3b\right)\)
Tương tự:
\(\sqrt{b^2+2bc+2c^2}\ge\dfrac{1}{\sqrt{5}}\left(2b+3c\right)\)
\(\sqrt{c^2+2ca+2a^2}\ge\dfrac{1}{\sqrt{5}}\left(2c+3a\right)\)
Cộng vế:
\(P\ge\dfrac{1}{\sqrt{5}}\left(5a+5b+5c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Nguyễn Việt Lâm Giáo viên, thầy ơi cho em hỏi làm thế này rồi làm tiếp có ra như trên được không ạ?? Em làm kiểu này không ra như trên!!!
\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(1+4\right).[\left(a+b\right)^2+b^2]}\ge\dfrac{1}{\sqrt{5}}.\left(a+b+2b\right)=\dfrac{1}{\sqrt{5}}.\left(a+3b\right)\)
3 số thực dương nhé.
Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel có :
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{1}{a^2+2bc}=\frac{1}{b^2+2ca}=\frac{1}{c^2+2ab}\)và \(a+b+c=1\)
\(\Leftrightarrow a^2+2bc=b^2+2ca=c^2+2ab\)
Mong có ai giúp mình từ đẳng thức trên giải ra a=b=c.
Bài 1:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ab-ac}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\end{matrix}\right.\)
\(M=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Bài 2:
\(a^3+b^3+c^3-3abc=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)(do \(a+b+c=0\))
\(\Rightarrow A=\dfrac{0}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\)
chị giải thích cho em cái đoạn này với ạ
\(\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ủa thế này là chi tiết rồi mà bạn
Áp dụng BĐT Mincopxki thôi:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)
\(P=a-\frac{2abc}{a^2+2bc}+b-\frac{2abc}{b^2+2ca}+c-\frac{2abc}{c^2+2ab}+3abc\)
\(P=\left(a+b+c\right)-2abc\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)+3abc\)
\(P=3-2abc\left(\frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\right)+3abc\)(Do a+b+c=3)
Áp dụng BĐT Schwarz cho 3 phân số:
\(\frac{1}{a^2+2abc}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)
\(=\frac{9}{\left(a+b+c\right)^2}=\frac{9}{3^2}=1\)
\(\Rightarrow P\le3-2abc+3abc=3+abc\)
Áp dụng BĐT Cauchy cho 3 số a,b,c: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)
\(\Rightarrow P\le3+1=4\).
Vậy \(Max_P=4.\)Đẳng thức xảy ra khi a=b=c=1.
Đợi chút; phần áp dụng BĐT schwarz, cái đầu tiên mình gõ thừa chữ "c" ở mẫu thức, bn sửa đi nhé.
Đề thiếu. Bạn coi lại đề.
dạ không cần nữa đâu ạ