Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(\frac{2017a}{ab+2017a+2017}\)+\(\frac{b}{bc+b+2017}\)+\(\frac{c}{ac+c+1}\)chứ bạn
Với abc=2017 ta có:
P=\(\frac{a^2bc}{ab+a^2bc+abc}\)+\(\frac{b}{bc +b+abc}\)+\(\frac{c}{ac+c+1}\)
P=\(\frac{ac}{ac+c+1}\)+\(\frac{1}{ac+c+1}\)+\(\frac{c}{ac+c+1}\)
P=1
LKKJHFJHFDTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTDJHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Rightarrow a=b=c\Rightarrow M=1\)
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
\(\Rightarrow S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{abc}{abc+c.abc+ca}\)
\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{1}{1+b+bc}+\frac{abc}{ac.\left(bc+b+1\right)}\)
\(S=\frac{bc}{bc+b+1}+\frac{1}{1+b+bc}+\frac{b}{bc+b+1}\)
\(S=\frac{bc+b+1}{bc+b+1}\)
\(S=1\)
Điều kiện \(c\ge0\);\(a;b>0\)
Ta có: \(a>b\)
\(\Rightarrow ac\ge bc\)
\(\Rightarrow ac+ab\ge bc+ab\)
\(a.\left(b+c\right)\ge b.\left(c+a\right)\)
\(\Rightarrow\frac{a+c}{b+c}\ge\frac{a}{b}\)
Tham khảo nhé~
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
Vậy M = 6
Thanks