Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=1-a\), \(y=1-b\), \(z=1-c\)
Ta có : \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\)
\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)
\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)
Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)
P=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a^2+\left(b+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(b^2+\left(a+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(c^2+\left(b+a\right)^2\right)\left(1+1\right)}}\)>=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(a+b+c\right)^2}}\)>=\(\sqrt{2}\)
ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN
a, \(^{\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow}x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+z^2\ge0}\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow A\le\frac{a^2}{3}\). dấu = xảy ra khi và chỉ khi x=y=z=a/3
b,Ap dụng bđt bunhia ta đc \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=a^2\Rightarrow B\ge\frac{a^2}{3}\)
dấu = xảy ra khi x=y=z=a/3
Sao hok ai giải giúp thế