\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được 

\(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\)

Ta lại có  \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

Do đó ta được \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{a^2+b^2+c^2}{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

p/s: check

9 tháng 10 2017

Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)

BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)

Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành: 

Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)

Lời giải:

 Áp dụng BĐT Cauchy -Schwarz:

\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)

Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\) 

Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev: 

\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)

\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)

Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)

\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)

Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)

Ta có đpcm

Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)

5 tháng 5 2020

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:

\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)

Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)

Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)

\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cộng theo vế của 3 BĐT trên, ta được: 

\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cuối cùng ta cần chứng minh được

\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)

21 tháng 6 2020

Bài làm:

Ta xét: \(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)

Tương tự ta chứng minh được: \(\frac{ca}{b^2\left(c+a\right)}\ge\frac{1}{b}\)và \(\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{c}\)

\(\Rightarrow VT+\frac{1}{4}\left(\frac{b+c}{bc}+\frac{c+a}{ca}+\frac{a+b}{ab}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Dạ nếu em làm còn nhầm lẫn chỗ nào thì mong mn thông cảm ạ!

21 tháng 6 2020

Ở đoạn tương tự mình viết nhầm phải là: \(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\)  và \(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)nhé!

Học tốt!!!!

Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d>0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0
17 tháng 2 2020

https://olm.vn/hoi-dap/detail/239526218296.html

27 tháng 2 2020

Sử dụng phân tích tuyệt vời của Ji Chen:

\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Bạn kia làm sai r

Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)

Phép chứng minh hoàn tất khi ta cm được

\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Theo bđt AM-GM ta có

\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)

\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)

hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

16 tháng 6 2020

Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)

Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét hai trường hợp:

Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)

Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng

Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)

\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)

Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

4 tháng 9 2018

\(\frac{2a^2}{a+b^2}=2a-\frac{2ab^2}{a+b^2}\ge2a-\frac{2ab^2}{2b\sqrt{a}}=2a-b\sqrt{a}\ge2a-\frac{b+ba}{2}\) 

Tương tự rồi cộng từng vế ta có: 

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge\frac{3}{2}\left(a+b+c\right)-\frac{ab+bc+ca}{2}\) 

Lại có: \(\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge3\left(ab+bc+ca\right)^2\Rightarrow a+b+c\ge ab+bc+ca\) 

\(\Rightarrow VT\ge\frac{3}{2}\left(a+b+c\right)-\frac{a+b+c}{2}\ge a+b+c\) 

Dấu "=' khi a=b=c=1

11 tháng 6 2020

Làm 2 cách nhá 

\(\frac{2a^2}{a+b^2}=\frac{2a^2}{\frac{a^2+1}{2}+b^2}=\frac{4a^2}{a^2+2b^2+1}=\frac{4a^4}{a^4+2a^2b^2+a^2}\)

Tương tự rồi theo Cauchy Schwarz ta có được:

\(LHS\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2+3}=\frac{36}{\left(a^2+b^2+c^2\right)^2+3}=\frac{36}{12}=3\)

Đẳng thức xảy ra tại a=b=c=1

14 tháng 8 2018

Ta có \(\frac{\sqrt{ab^2c^3}}{b+c}\le\frac{\sqrt{ab^2c^3}}{2\sqrt{bc}}=\frac{1}{2}.\sqrt{ac.bc}\)

Mà \(\frac{1}{2}\sqrt{ac.cb}\le\frac{1}{4}\left(ac+cb\right)\)\(\Rightarrow\frac{\sqrt{ab^2c^3}}{b+c}\le\frac{1}{4}\left(ac+bc\right)\)

Tương tự cộng lại, ta có 

\(\frac{\sqrt{ab^2c^3}}{b+c}+\frac{\sqrt{bc^2a^3}}{c+a}+\frac{\sqrt{ca^2b^3}}{a+b}\le\frac{1}{2}\left(ab+bc+ca\right)\)

Mà \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\Rightarrow\frac{\sqrt{ab^2c^3}}{b+c}+...\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c=1

^.^