Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cosi, ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:
\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)
Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:
\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)
\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)
\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)
\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)
\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Áp dụng BĐT AM - GM dạng ngược ta dễ có:
\(\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{2}{a+b+b+c}=\frac{2}{\left(a+2b+c\right)}\)
Tương tự:
\(\frac{1}{\sqrt{\left(b+c\right)\left(c+a\right)}}\ge\frac{2}{\left(b+2c+a\right)}\frac{1}{\sqrt{\left(c+a\right)\left(a+b\right)}}\ge\frac{2}{2\left(c+2a+b\right)}\)
Khi đó:
\(P\ge2\left(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\right)\)
\(\ge\frac{9}{2\left(a+b+c\right)}=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c=2
Gáy cach nua.
Chứng minh: \(\Sigma\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)}\)
Theo Holder, cần c.m
\(\frac{3^3}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(c+a\right)+\left(c+a\right)\left(a+b\right)}\ge\frac{81}{4\left(a+b+c\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Done
\(M\le\frac{a}{\sqrt{2a}}+\frac{b}{\sqrt{2b}}+\frac{c}{\sqrt{2c}}=\frac{1}{\sqrt{2}}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(M\le\frac{1}{\sqrt{2}}\sqrt{3\left(a+b+c\right)}\le\frac{3}{\sqrt{2}}\)
\(\Rightarrow M_{max}=\frac{3\sqrt{2}}{2}\) khi \(a=b=c=1\)