\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=1008\).

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

Xin phép thủ công :"))

\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=1008\)

\(\Leftrightarrow\frac{\left(b-c\right)\left(c-a\right)+\left(a-b\right)\left(c-a\right)+\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1008\)

\(\Leftrightarrow\frac{bc-c^2-ab+ac+ac-bc-a^2+ab+ab-b^2-ac+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1008\)

\(\Leftrightarrow-\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1008\)

\(A=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(c-b\right)\left(b-c\right)+\left(a-c\right)\left(c-a\right)+\left(b-a\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{bc-b^2-c^2+bc+ac-c^2-a^2+ac+ab-a^2-b^2+ab}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{-2\left(a^2+b^2+c^2-ab-ac-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=2.1008=2016\)

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

22 tháng 9 2017

Trần Hữu Ngọc Minh bn tham khảo nha:

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{"b+c"+"a+c"+"a+b"}=\frac{a+b+c}{2."a+b+c"}\)

Xét 2 trường hợp, ta có:

\(\cdot TH1:a+b+c=0\)thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)

Không phụ thuộc vào các giá trị a,b,c 1:

\(\cdot TH2:a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2."a+b+c"}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)

Không phụ thuộc vào các giá trị a,b,c 2

Từ 1 và 2 \(\Rightarrow\)đpcm

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

29 tháng 9 2016

Ta có

\(1S=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-A\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Xét tử ta có Tử = ba2 - ab2 + cb2 - bc2 + ac2 - ca2

= (ba2 - bc2) + (ac2 - ca2) + (- ab2 + cb2)

= (a - c)(ab + bc - ac - b2)

= (a - c)(b - c)(a - b)

Từ đó => S = - 1

4 tháng 8 2016

Đặt \(\hept{\begin{cases}\left(b-c\right)\left(1+a\right)^2=m\\\left(c-a\right)\left(1+b\right)^2=n\\\left(a-b\right)\left(1+c\right)^2=p\end{cases}}\)
khi đó pt đã cho có dạng \(\frac{m}{x+a^2}+\frac{n}{x+b^2}+\frac{p}{x+c^2}=0\)
\(\Rightarrow m\left(x+a^2\right)\left(x+b^2\right)+n\left(x+a^2\right)\left(x+c^2\right)+p\left(x+b^2\right)\left(x+c^2\right)=0\)
\(\Rightarrow x^2\left(m+n+p\right)+x\left(m\left(a^2+b^2\right)+p\left(b^2+c^2\right)+n\left(c^2+a^2\right)\right)=0\)
Đến đây biện luận thôi ~~
Tớ làm hơi tắt đấy. 

2 tháng 1 2017

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\\\frac{b}{c-a}=-\frac{a}{b-c}-\frac{c}{a-b}\\\frac{c}{a-b}=-\frac{a}{b-c}-\frac{b}{c-a}\end{matrix}\right.\) (1)

\(\left\{\begin{matrix}\frac{a}{\left(b-c\right)^2}=\frac{a}{b-c}.\frac{1}{b-c}\\\frac{b}{\left(c-a\right)^2}=\frac{b}{c-a}.\frac{1}{c-a}\\\frac{c}{\left(a-b\right)^2}=\frac{c}{a-b}.\frac{1}{a-b}\end{matrix}\right.\)

Ta có : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

\(\Rightarrow\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)

Thay điều (1) vào biểu thức ta có :

\(\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)

\(\Rightarrow\left(-\frac{b}{c-a}-\frac{c}{a-b}\right).\frac{1}{b-c}+\left(-\frac{a}{b-c}-\frac{c}{a-b}\right).\frac{1}{c-a}+\left(-\frac{a}{b-c}-\frac{b}{c-a}\right).\frac{1}{a-b}=0\)

\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(b-c\right)\left(c-a\right)}-\frac{c}{\left(a-b\right)\left(c-a\right)}-\frac{a}{\left(b-c\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{a}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(a-b\right)\left(b-c\right)}-\frac{c}{\left(c-a\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\frac{b-a}{\left(c-a\right)\left(b-c\right)}-\frac{c-a}{\left(a-b\right)\left(b-c\right)}-\frac{c-b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\left[\frac{b+a}{\left(c-a\right)\left(b-c\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(b+a\right)\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(c+a\right)\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(c+b\right)\left(b-c\right)^2\left(c-a\right)\left(a-b\right)}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right]=0\)

\(\Rightarrow-\left\{\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(b+a\right)\left(a-b\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)\right]}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right\}=0\)

\(\Rightarrow-\left[\frac{\left(b+a\right)\left(b-a\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(a^2-b^2\right)+\left(c^2-a^2\right)+\left(b^2-c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(-b^2+b^2\right)+\left(-a^2+a^2\right)+\left(-c^2+c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{0}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow0=0\) ( đpcm )

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)