Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Ta có: \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\) và \(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)=12\)
\(\Rightarrow a^2+b^2+c^2\ge3\left(1\right)\)
Ta lại có:
\(\left\{{}\begin{matrix}\dfrac{a^3}{b}+ab\ge2a^2\\\dfrac{b^3}{c}+bc\ge2b^2\\\dfrac{c^3}{a}+ca\ge2c^2\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge a^2+b^2+c^2\left(2\right)\)
Từ (1) và (2) \(\RightarrowĐPCM\)
Cách 1
Áp dụng bđt Cauchy ta có
\(\frac{a^3}{b}+b+1\ge3a,\frac{b^3}{c}+c+1\ge3b,\frac{c^3}{a}+a+1\ge3a\)
Cộng từng vế 3 bđt trên ta có
\(A=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a+b+c\right)-3\)
Mặt khác (a+b+c)2+3(a+b+c)\(\ge\)18 (biến đổi tương đương là c/m được)
Đặt m=a+b+c
=> t2+3t-18\(\ge\)0
=> t\(\ge\)3
=> A\(\ge\)3
Dấu "=" xảy ra khi a=b=c=1
Cách 2,rất phức tạp :(
\(6=a+b+c+ab+bc+ca\le\frac{\left(a+b+c\right)^2+3\left(a+b+c\right)}{3}\)
Suy ra \(\left(a+b+c\right)^2+3\left(a+b+c\right)-18\ge0\)
\(\Leftrightarrow a+b+c\ge3\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge9\).
Mà \(VT\le3\left(a^2+b^2+c^2\right)\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Leftrightarrow a^2+b^2+c^2\ge3\)
Ta chứng minh BĐT sau = sos cho đẹp: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^3}{b}-\frac{a^2b}{b}\right)\ge0\Leftrightarrow\Sigma_{cyc}\frac{a^2\left(a-b\right)}{b}-\Sigma_{cyc}a\left(a-b\right)+\Sigma_{cyc}a\left(a-b\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{a^2\left(a-b\right)^2}{b}+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{a^2\left(a-b\right)^2}{b}+\frac{1}{2}\left(a-b\right)^2\ge0\Leftrightarrow\left(a-b\right)^2\left(\frac{a^2}{b}+\frac{1}{2}\right)\ge0\) (đúng)
Do vậy: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3^{\left(đpcm\right)}\)
Xảy ra đẳng thức khi a = b = c = 1
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
Chứng minh rằng \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)
\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)
\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)
\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{matrix}\right.\)
\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\) ( đpcm )
Vì \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)
Mà \(\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)( đpcm )
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(\sum\frac{a^2}{a+\sqrt[3]{bc}}\geq\sum\frac{a^2}{a+\frac{b+c+1}{3}}=\sum\frac{9a^2}{3(3a+b+c)+a+b+c}\)
\(=\sum\frac{9a^2}{10a+4b+4c}\geq\frac{9(a+b+c)^2}{(10a+4b+4c)}=\frac{9(a+b+c)^2}{18(a+b+c)}=\frac{3}{2}\)
Ta có: \(\dfrac{ab}{c+1}=\dfrac{ab}{b+c+a+c}\le\dfrac{1}{4}\left(\dfrac{ab}{b+c}+\dfrac{ab}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại:
\(\dfrac{bc}{a+1}\le\dfrac{1}{4}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{b+1}\le\dfrac{1}{4}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)
Cộng theo vế các BĐT trên ta có:
\(VT\le\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\)
https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,+b,+c+tho%E1%BA%A3+m%C3%A3n:+abc+a+b=3ababc+a+b=3ababc+a+b=3ab.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+%E2%88%9Aaba+b+1+%E2%88%9Abbc+c+1+%E2%88%9Aaca+c+1%E2%89%A5%E2%88%9A3aba+b+1+bbc+c+1+aca+c+1%E2%89%A53\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{b}{bc+c+1}}+\sqrt{\dfrac{a}{ca+c+1}}\ge\sqrt{3}&id=695796