\(\sqrt{1+\dfrac{16a}{b+c}}+\sqrt{1+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

Theo hệ quả quen thuộc của BĐT AM-GM thì:

\((a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)

Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)

hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

19 tháng 11 2018

https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,+b,+c+tho%E1%BA%A3+m%C3%A3n:+abc+a+b=3ababc+a+b=3ababc+a+b=3ab.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+%E2%88%9Aaba+b+1+%E2%88%9Abbc+c+1+%E2%88%9Aaca+c+1%E2%89%A5%E2%88%9A3aba+b+1+bbc+c+1+aca+c+1%E2%89%A53\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{b}{bc+c+1}}+\sqrt{\dfrac{a}{ca+c+1}}\ge\sqrt{3}&id=695796

AH
Akai Haruma
Giáo viên
17 tháng 2 2018

Lời giải:

Ta có \(x=\frac{1}{\sqrt{b}+\sqrt{c}}; y=\frac{1}{\sqrt{a}+\sqrt{c}}; z=\frac{1}{\sqrt{b}+\sqrt{a}}\)

\(\Rightarrow \left\{\begin{matrix} \sqrt{b}+\sqrt{c}=\frac{1}{x}\\ \sqrt{c}+\sqrt{a}=\frac{1}{y}\\ \sqrt{b}+\sqrt{a}=\frac{1}{z}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} \sqrt{a}=\frac{1}{2}(\frac{1}{y}+\frac{1}{z}-\frac{1}{x})\\ \sqrt{b}=\frac{1}{2}(\frac{1}{x}+\frac{1}{z}-\frac{1}{y})\\ \sqrt{c}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}-\frac{1}{z})\end{matrix}\right.\)

Khi đó: \(2b=a+c\)

\(\Leftrightarrow \frac{1}{2}(\frac{1}{x}+\frac{1}{z}-\frac{1}{y})^2=\frac{1}{4}(\frac{1}{y}+\frac{1}{z}-\frac{1}{x})^2+\frac{1}{4}(\frac{1}{x}+\frac{1}{y}-\frac{1}{z})^2\)

\(\Leftrightarrow \frac{1}{xz}-\frac{1}{xy}-\frac{1}{yz}=\frac{1}{2yz}-\frac{1}{2xz}-\frac{1}{2xy}+\frac{1}{2xy}-\frac{1}{2yz}-\frac{1}{2xz}\)

\(\Leftrightarrow \frac{1}{xz}-\frac{1}{xy}-\frac{1}{yz}=\frac{-1}{xz}\)

\(\Leftrightarrow \frac{2}{xz}=\frac{1}{xy}+\frac{1}{yz}\)

\(\Leftrightarrow 2y=z+x\)

Ta có đpcm.

16 tháng 3 2018

\(\sqrt{\dfrac{a}{1-a}}+\sqrt{\dfrac{b}{1-b}}+\sqrt{\dfrac{c}{1-c}}>2\)

\(\Leftrightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế ta cũng có:

\(VT\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" ko xảy ra nên ta có ĐPCM

16 tháng 3 2018

bạn có thể giải kỹ hơn phần bđt am-gm ko tại sao lại ra lớn hơn luôn 2a/(a+b+c)