K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

\(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)

\(=2-\frac{1}{1+a}+2-\frac{1}{1+b}+2-\frac{1}{1+c}=6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)

Xét \(f\left(x\right)=0\)có 3 nghiệm a; b ; c 

Theo định lí viet ta có: 

\(a+b+c=0\)

\(ab+bc+ac=-3\)

\(abc=-1\)

=> \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{1+bc+b+c+1+ac+a+c+1+ab+a+b}{1+ab+a+b+c+abc+ab+ac}\)

\(=\frac{3+\left(ab+ac+bc\right)+2\left(a+b+c\right)}{1+\left(ab+ac+bc\right)+\left(a+b+c\right)+abc}=\frac{3-3+0}{1-3+0-1}=0\)

=> \(A=\)\(6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)= 6 - 0 = 6.

26 tháng 3 2020

Anh học phổ thông mà hỏi câu lớp 8 là sao?

22 tháng 4 2019

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)

Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)

Mà do \(n\in N\Rightarrow n^2+10-6n=1\)

\(\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\)

\(\Leftrightarrow n-3=0\)

\(\Leftrightarrow n=3\)

Vậy n=3.

16 tháng 7 2019

=(x+y)^2-4(x+y)+1=3^2-4.3+1=9-12+1=-2

23 tháng 7 2019

a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc  :)

Hok tốt . Nhìn câu b mik nản quá nên thôi :)

16 tháng 7 2019

\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=9-12+1=-3+1=-2\)

16 tháng 7 2019

2) Dạng này chỉ có nước rút gọn đi thôi:v

Rút gọn đi ta được: \(A=9\left(a^2+b^2+c^2\right)=9m\)

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

12 tháng 8 2015

2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab)                                                                         =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m

30 tháng 6 2018

bài 1 

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)