\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:

\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)

Với n = 1 thì nó đúng.

Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)

Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)

Từ (1) và (2) cái ta cần chứng minh trở thành:

\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)

\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)

Vậy ta có ĐPCM.

Áp dụng và bài toán ta được

\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)

\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)

11 tháng 5 2019

Câu a : Áp dụng BĐT Cô - si cho các số dương ta có :

\(\left\{{}\begin{matrix}\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\\\frac{b^2}{c}+c\ge2\sqrt{\frac{b^2}{c}.c}=2b\\\frac{c^2}{a}+a\ge2\sqrt{\frac{c^2}{a}.a}=2c\end{matrix}\right.\)

Cộng từng vế của BĐT ta thu được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2a+2b+c\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c=1\) ( đpcm )

Dấu \("="\) xảy ra khi \(a=b=c=\frac{1}{3}\)