K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Áp dụng bất đẳng thức tam giác có a+b>ca+b>c

                                                      <=>ac+bc>c2<=>ac+bc>c2(vìc>0c>0)

                                       Tương tự có:ab+bc>b2,ac+ab>a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

Nhớ k cho tớ nhé

27 tháng 3 2016

b2+c2

Toán lớp 7

o0o_Không Phải Dạng Vừa Đâu_o0o 3 phút trước (19:36)

Áp dụng bất đẳng thức tam giác có a+b>ca+b>c

                                                      <=>ac+bc>c2<=>ac+bc>c2(vìc>0c>0)

                                       Tương tự có:ab+bc>b2,ac+ab>a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

Nhớ k cho tớ nhé

 Đúng 0

Ta có: `a, b, c` là các cạnh của tam giác

`-` Theo bất đẳng thức tam giác ta có: `A+B>C -> AB+AC>A^2`

Tương tự vế trên 

`-> CA+CB>C^2 ; AB+BC>B^2`

Cộng tổng tất cả các vế trên: `AC+BC+AB+AC+AB+BC > A^2+B^2+C^2`

`-> 2 (AB+AC+BC) > A^2+B^2+C^2 (đpcm)`

7 tháng 12 2018

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

7 tháng 12 2018

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

3 tháng 4 2022

\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)

Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\tođpcm\)

\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)

\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)

4 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{8a}{8c}=\frac{9b}{9d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{8a}{8c}=\frac{9b}{9d}=\frac{8a+9b}{8c+9d}=\frac{8a-9b}{8c-9d}\left(dpcm\right)\)

b) xem lại đề nha b

29 tháng 11 2017

nhận xét c2 = a2 + b2

12 tháng 3 2023

Áp dụng tính chất các dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)

\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)

\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)

\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)

                         \(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))

 

12 tháng 3 2023

https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2

liệt phím? Mù mắt?

7 tháng 12 2015

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

7 tháng 12 2015

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)