Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
surf trc khi hỏi Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến
Giải:
Ta có BĐT phụ: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Áp dụng BĐT Cauchy - Schwarz ta có:
\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\)
\(\ge3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)
\(\ge3\sqrt[3]{\dfrac{abc}{abc}}\ge3\) (Đpcm)
câu 1 :Đặt b+c-a=x; a+c-b=y ; a+b-c=z
vì a,b,c là 3 cạnh của tam giác nên
b+c-a>0 ; a+c-b>0 ; a+b-c>0
Đặt biểu thức \(\dfrac{a}{b +c-a}\)+\(\dfrac{b}{c+a-b}\)+\(\dfrac{c}{a+b-c}\)=S thì
2S=\(\dfrac{2a}{b+c-a}\)+\(\dfrac{2b}{c+a-b}\)+\(\dfrac{2c}{a+b-c}\)
mà \(\dfrac{2a}{b+c-a}\)=\(\dfrac{a+c-b+a+b-c}{b+c-a}\)=\(\dfrac{y+z}{x}\) , tương tự
\(\dfrac{2b}{c+a-b}\)=\(\dfrac{x+z}{y}\)
\(\dfrac{2c}{a+b-c}\)=\(\dfrac{x+y}{z}\)
=>2S=\(\dfrac{x+y}{z}\)+\(\dfrac{y+z}{x}\)+\(\dfrac{x+z}{y}\)=\(\dfrac{x}{z}\)+\(\dfrac{y}{z}\)+\(\dfrac{y}{x}\)+\(\dfrac{z}{x}\)+\(\dfrac{x}{y}\)+\(\dfrac{z}{y}\)
ta thấy \(\dfrac{x}{z}\)+\(\dfrac{z}{x}\)=\(\dfrac{x^{2^{ }}+z^2}{xz}\)\(\ge\)\(\dfrac{2xz}{xz}\)=2 tương tự với 2 cặp số nghich đảo còn lại thì ta có 2S\(\ge\)2+2+2=6
nên S\(\ge\)3
dấu = xảy ra \(\Leftrightarrow\)x=y=z
câu 2 :
ta có a+b>c ;b+c>a ; a+c>b
xét \(\dfrac{1}{a+c}\)+\(\dfrac{1}{b+c}\)>\(\dfrac{1}{a+b+c}\)+\(\dfrac{1}{b+c+a}\)=\(\dfrac{2}{a+b+c}\)>\(\dfrac{2}{a+b+a+b}\)=\(\dfrac{1}{a+b}\)
tương tự \(\dfrac{1}{a+b}\)+\(\dfrac{1}{a+c}\)>\(\dfrac{1}{b+c}\);\(\dfrac{1}{a+b}\)+\(\dfrac{1}{b+c}\)>\(\dfrac{1}{a+c}\)
nên điều phải chứng minh
C1 : Áp dụng bất đẳng thức AM - GM ta có :
\(\sum\dfrac{a}{b+c-a}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)
Dấu = xảy ra khi và chỉ khi a = b = c.
C2 : Theo Cauchy Schwarz :
\(\sum \frac{a}{b+c-a}\geq \sum \frac{a^2}{ab+ac-a^2}\geq \frac{(a+b+c)^2}{2(ab+ca+bc)-a^2-b^2-c^2}\geq \frac{(a+b+c)^2}{\frac{2}{3}(a+b+c)^2-\frac{1}{3}(a+b+c)^2}=3\)
(đpcm).
Đặt b+c-a=x, c+a-b=y, a+b-c=z thì 2a =y+z, 2b +x+z, 2c +x+y. Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
= \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
=\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)(1)
Mà \(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)( vì xy >0)
\(\Rightarrow\)\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)(2)
Tương tự: \(\dfrac{z}{x}+\dfrac{x}{z}\ge2\)(3)
\(\dfrac{z}{y}+\dfrac{y}{z}\ge2\)(4)
Từ (1),(2),(3) và (4):
\(\Rightarrow\)\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)\(\ge6\)
Hay \(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\) \(\ge6\)
Do đó: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)(đpcm)
Áp dụng BĐT AM-GM ta có:
\(2\sqrt{\dfrac{y+z-x}{x}}\le\dfrac{y+z-x}{x}+1=\dfrac{y+z}{x}\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y+z-x}}\ge\dfrac{2x}{y+z}\)
Áp dụng vào đề bài ta có:
\(A=\sqrt{\dfrac{a}{b+c-a}}+\sqrt{\dfrac{b}{c+a-b}}+\sqrt{\dfrac{c}{a+b-c}}\ge\)
\(\ge\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=\dfrac{2.3}{2}=3\)(BĐT Nesbitt)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Đặt: \(b+c-a=x\)
\(a+c-b=y\)
\(a+b-c=z\)
Suy ra:
\(2a=y+z\)
\(2b=x+z\)
\(2c=x+y\)
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
\(=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\) ( BĐT luôn đúng)
=> ĐPCM
a,b,c là độ dài 3 cạnh t/g
\(\Rightarrow\dfrac{a}{b+c-a};\dfrac{b}{a+c-b};\dfrac{c}{a+b-c}>0\)
\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(A+\dfrac{3}{2}=\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{b+a-c}+\dfrac{1}{2}\)
\(A+\dfrac{3}{2}=\dfrac{a+b+c}{2\left(b+c-a\right)}+\dfrac{a+b+c}{2\left(a+c-b\right)}+\dfrac{a+b+c}{2\left(b+a-c\right)}\)
\(A+\dfrac{3}{2}=\dfrac{\left(a+b+c\right)}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{b+a-c}\right)\)
\(A+\dfrac{3}{2}\ge\dfrac{a+b+c}{2}\cdot\dfrac{9}{b+c-a+a+c-b+b+a-c}\)
\(A+\dfrac{3}{2}\ge\dfrac{9}{2}\)
\(\Rightarrow A\ge3\left(đpcm\right)\)
a)a,b,c là độ dài 3 cạnh của 1 tam giác
\(\Rightarrow a< b+c\Rightarrow a^2< ab+ac\)
TT\(\Rightarrow b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng vế theo vế ta có đpcm
b)BĐT\(\Leftrightarrow\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}\ge\dfrac{9}{2}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{a+b+c}{b+c-a}+\dfrac{a+b+c}{a+c-b}+\dfrac{a+b+c}{a+b-c}\right)\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge9\)(đúng theo AM-GM)
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn
đặt b+c-a=x
a+c-b=y
a+b-c=z
ta có x+y=2c
x+z=2b
z+y=2a
ta lại có
2A=\(\dfrac{2a}{x}+\dfrac{2b}{y}+\dfrac{2c}{z}\)
2A=\(\dfrac{z+y}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
2A=\(\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{y}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{y}{z}\)
2A=\(\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge2+2+2=6\)
=>2A= \(\dfrac{2a}{x}+\dfrac{2b}{y}+\dfrac{2c}{z}\ge6\)
<=>A≥3 (chia cả 2 vế cho 2 ) (đpcm)
Xin góp thêm cách nữa:
Am-Gm thẳng cho 3 số:
\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\)
việc còn lại chỉ việc chứng minh :
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Áp dụng BĐT Am-Gm ta có:
\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)=b^2\)
\(\left(b+c-a\right)\left(c+a-b\right)\le c^2\)
\(\left(c+a-b\right)\left(a+b-c\right)\le a^2\)
Nhân lại ta có đpcm.Dấu = xảy ra khi a=b=c