\(4\left(\dfrac{1}{a+b}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

a. Xét hiệu: \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\)

=\(\dfrac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)

\(=\dfrac{a^2-2ab+b^2}{ab\left(a+b\right)}=\dfrac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Vì a,b>0

Xảy ra đẳng thức khi và chỉ khi a=b

6 tháng 4 2017

a) Ta có: \(\left(a-b\right)^2\ge0\left(1\right)\forall a,b\)

( Dấu = xày ra khi và chỉ khi a=b)

Cộng 4ab vào 2 vế, ta có:

\(\left(a-b\right)^2+4ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Chia 2 vế cho ab(a+b)>0, ta có:

\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\)\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b) Ta có:

\(2p=a+b+c\)

\(p-a=\dfrac{a+b+c}{2}-a=\dfrac{b+c-a}{2}>0\) vì b+c>a

Tương tự: \(p-b>0,p-c>0\)

Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)cho từng cặp số p-a, p-b; p-b,p-c;p-c,p-a

Ta có:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{\left(p-a\right)+\left(p-b\right)}=\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\left(1\right)\)

Tương tự:

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\left(3\right)\)

Cộng các BĐT cùng chiều (1), (2), (3) vế theo vế, ta có:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Do đó: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

3 tháng 4 2018

B1:

\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Xét hiệu:

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

=> BĐT luôn đúng

*

Ta có:

\(a< b+c\Rightarrow a^2< ab+ac\)

\(b< a+c\Rightarrow b^2< ab+ac\)

\(c< a+b\Rightarrow a^2< ac+bc\)

Cộng từng vế bất đẳng thức ta được:

\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

3 tháng 4 2018

B2:

Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)

Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)

Suy ra:

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

=> ĐPCM

8 tháng 3 2018

BĐT cô si: \(\dfrac{x+y}{2}>\left(hoặc=\right)\sqrt{xy}\)

=>x+y >(hoặc =) \(2\sqrt{xy}\)

=>\(\left(x+y\right)^2>\left(hoặc=\right)4xy\)

=>\(\dfrac{1}{x}+\dfrac{1}{y}>\left(hoặc=\right)\dfrac{4}{x+y}\)

vì P=\(\dfrac{a+b+c}{2}=>a+b+c=2p\)

=>c=2p-a-b

b=2p-a-c

a=2p-b-c

ta có:\(\dfrac{1}{p-a}+\dfrac{1}{p-b}>hoặc=\dfrac{4}{p-a+p-b}=\dfrac{4}{c}\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-a+p-c}=\dfrac{4}{b}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-b+p-c}=\dfrac{4}{a}\)

cộng vế với vế ta đc

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)>\left(hoặc=\right)4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

<=>\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Bài 1:

(a)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên theo BĐT tam giác ta có:

\(\left\{\begin{matrix} a+b>c\\ b+c>a\\ c+a>b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c(a+b)>c^2\\ a(b+c)>a^2\\ b(c+a)>b^2\end{matrix}\right.\)

\(\Rightarrow c(a+b)+a(b+c)+b(c+a)> c^2+a^2+b^2\)

\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2\)

Ta có đpcm.

(2): Bài này có nhiều cách giải. Nhưng mình xin đưa ra cách làm thuần túy Cô-si nhất.

Đặt

\((a+b-c, b+c-a, c+a-b)=(x,y,z)\Rightarrow (a,b,c)=(\frac{x+z}{2}; \frac{x+y}{2}; \frac{y+z}{2})\)

Khi đó:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\geq 6\sqrt[6]{\frac{1}{2^6}}=3\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

(c):

Theo BĐT tam giác:

\(b+c>a\Rightarrow 2(b+c)> b+c+a\Rightarrow b+c> \frac{a+b+c}{2}\)

\(\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}\)

Hoàn toàn tương tự với những phân thức còn lại và cộng theo vế:

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Bài 2:

Áp dụng BĐT Cô-si cho các số dương:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^2.b^2.c^2.d^2.ab.cd}=6\sqrt[6]{(abcd)^3}=6\sqrt[6]{1^3}=6\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2=c^2=d^2=ab=cd\\ abcd=1\end{matrix}\right.\Rightarrow a=b=c=d=1\)

28 tháng 5 2017

Đề phải là \(\ge\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{1}{\dfrac{-a+b+c}{2}}+\dfrac{1}{\dfrac{a-b+c}{2}}+\dfrac{1}{\dfrac{a+b-c}{2}}=2\left(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\right)\)

Áp dụng BĐT trong tam giác:

a+b>c=>a+b-c>0

a+c>b=>a-b+c>0

b+c>a=>-a+b+c>0

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)cho 2 số dương:

\(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}\ge\dfrac{4}{2c}=\dfrac{2}{c}\)

Dấu = xảy ra khi -a+b+c=a-b+c<=>a=b

\(\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\ge\dfrac{4}{2a}=\dfrac{2}{a}\)

Dấu = xảy ra khi a-b+c=a+b-c<=>b=c

\(\dfrac{1}{a+b-c}+\dfrac{1}{-a+b+c}\ge\dfrac{4}{2b}=\dfrac{2}{b}\)

Dấu = xảy ra khi a+b-c=-a+b+c<=>a=c

=>\(2\left(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

Hay \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>tam giác ABC đều

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 1:

Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)

Áp dụng BĐT AM-GM cho các số dương:

\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)

\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)

\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 2:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)

\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)

\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Cộng theo vế và rút gọn:

\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)

\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=1$