Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4b^2c^2-\left(b^2+c^2-a^2\right)=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)=\left(a^2-\left(b-c\right)^2\right)\left(\left(b+c\right)^2-a^2\right)\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)(dpcm)
Vì a-b+c >0
a+b-c>0
b+c-a> 0
a+b+c>0
a2 + b2 = c2
<=> (a2 + b2)n = c2n
<=> a2n + P + b2n = c2n
Mà P > 0 => a2n + b2n =< c2n
Dấu bằng xảy ra <=> n = 1 (làm đại ạ)
Vì a,b,c là 3 cạnh của 1 tam giác
\(\Rightarrow\)\(a+b>c\)( bất đẳng thức tam giác)
\(\Rightarrow\)\(ac+bc>c^2\)( nhân 2 vế với c )
Tương tự ta có :
\(ba+ca>a^2\)
\(cb+ab>b^2\)
Công 2 vế lại ta có : \(ac+bc+ba+ca+cb+ab>a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
áp dụng bất đẳng thức tam giác
=>a+b>=c
b+c>=a
a+c>=b
=>c^2<=ac+bc
a^2<=ab+ac
b^2<=ab+bc
=>a^2+b^2+c^2<+2*(ab+bc+ac)
=>đfcm
Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Hay \(a=b=c\)
Thay vào bài toán:
\(\left(2a+70b+1945c\right)^{2018}=\left(2a+70a+1945a\right)^{2018}=2017a^{2018}\)
Lại có:
\(2017^{2018}.a^{39}.b^{13}.b^{1975}=2017^{2018}.a^{39}.a^{13}.a^{1975}=2017^{2018}.a^{2018}=2017a^{2018}\)Ta có đpcm